Physicists Design Ultrafocused Pulses

With this setup arbitrarily focused pulses could be generated IQOQI Innsbruck

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to small spatiotemporal dimensions. Engineers may use different methods to achieve this.

In the journal Physical Review Letters, researchers in Oriol Romero-Isart’s group at the Institute of Quantum Optics and Quantum Information (IQOQI) and the Institute for Theoretical Physics at the University of Innsbruck together with Ignacio Cirac and Theodor Hänsch at the Max Planck Institute of Quantum Optics, Munich, have published a new scheme for generating ultrafocused electromagnetic fields.

Surprising behavior

When electric current flows through a coil, it produces electromagnetic waves that propagate in all directions. When the coil is placed inside a cylinder that reflects the waves perfectly a surprising phenomenon happens. “With this setup arbitrarily focused pulses and quasi-equidistant pulses could be generated,” says junior scientist Patrick Maurer. “The more waveguide modes are excited, the more focused the electromagnetic fields become.”

The theoretical physicists analytically characterized the system to such a degree that, based on the reflections of the electromagnetic waves on the inside of the cylinder, they were able to design a current pulse that excites a clearly defined number of modes. “Because of the specific properties of the system, the current pulse needs to be adjusted only slightly in order to change the number of modes or, in other words, to focus the field more strongly. The average frequency of the pulse basically remains the same,” explains Jordi Prat-Camps, Postdoc in Romero-Isart’s research team.

The spectrum of the generated field is determined by the radius of the cylinder. For example, focused microwave pulses can be generated by using a cylinder that is several centimeters thick.

Technological challenges

The physicists in Innsbruck were able to confirm their analytical calculations with numerical simulations. They showed that the fields kept their unique properties for some time after they exited the cylinder through one of the openings. This new concept is of interest for technological applications that require ultrafocused fields to work.

For example, in the field of microscopy this new scheme could facilitate the development of even more precise devices. To implement their scheme, the physicists point out two requirements: “First, we need to find a material that perfectly reflects in a broad frequency range,” says Prat-Camps. “In addition, we have to precisely generate the calculated current pulse. The better these requirements are met, the clearer the visibility of the desired effect will be.”

This work is supported by the European Research Council and the Austrian Federal Ministry of Science, Research, and Economy (BMWFW).

Publication: Ultrafocused Electromagnetic Field Pulses with a Hollow Cylindrical Waveguide P. Maurer, J. Prat-Camps, J. I. Cirac, T. W. Hänsch, O. Romero-Isart. Phys. Rev. Lett. 119, 043904 DOI: 10.1103/PhysRevLett.119.043904 (Preprint: https://arxiv.org/abs/1705.03231)

Contact:
Patrick Maurer
Institute of Quantum Optics and Quantum Information
Austrian Academy of Sciences
phone: +43 512 507 4731
email: patrick.maurer@oeaw.ac.at
web: https://iqoqi.at/en/group-page-romero-isart

Christian Flatz
Public Relations
Phone: +43 676 872532022
Email: pr-iqoqi@oeaw.ac.at

http://dx.doi.org/10.1103/PhysRevLett.119.043904 – Ultrafocused Electromagnetic Field Pulses with a Hollow Cylindrical Waveguide P. Maurer, J. Prat-Camps, J. I. Cirac, T. W. Hänsch, O. Romero-Isart. Phys. Rev. Lett. 119, 043904
http://iqoqi.at/en/group-page-romero-isart – Quantum Nanophysics, Optics and Information

Media Contact

Dr. Christian Flatz Universität Innsbruck

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

New yttrium-hydrogen compounds discovered

Researchers at the University of Bayreuth have made a significant scientific breakthrough by discovering new yttrium-hydrogen compounds having serious implications for the research on high-pressure superconductivity. High-pressure superconductivity refers to…

New AI model detects ninety percent of lymphatic cancer cases

Medical image analysis using AI has developed rapidly in recent years. Now, one of the largest studies to date has been carried out using AI-assisted image analysis of lymphoma, cancer…

UTA preps giant particle detectors for neutrino project

Excavation of caverns part of Fermilab’s Deep Underground Neutrino Experiment. With excavation work complete at the site where four gigantic particle detectors for the international Deep Underground Neutrino Experiment (DUNE) will be…

Partners & Sponsors