Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists create new kind of pasta to explain mysterious, ring-shaped polymers

01.12.2014

Two physicists from the University of Warwick have taken to the kitchen to explain the complexity surrounding what they say is one of the last big mysteries in polymer physics.

As a way of demonstrating the complicated shapes that ring-shaped polymers can adopt, the researchers have created a brand new type of ring-shaped pasta, dubbed "anelloni" (anello being the Italian word for "ring"), which they've exclusively unveiled in this month's Physics World.


This image shows a bowl of anelloni, consisting of ring-shaped spaghetti made from linguine.

Credit: Davide Michieletto

With just 2 eggs and 200 g of plain flour, Davide Michieletto and Matthew S Turner have created large loops of pasta that, when cooked and thrown together in a bowl, get hugely tangled up, in much the same way that ring-shaped polymers become massively intertwined with each other.

A video of Davide Michieletto showing what it's like to eat this new kind of pasta was taken at the headquarters of Physics World and can be viewed here.

Whereas it's easy when faced with a bowl of normal spaghetti to suck or pull a single strand out, it's much harder to extract a single piece of pasta from a pile of anelloni, which get horribly tangled up.

"The thing about ring-shaped polymers...is that they're very poorly understood - in fact, they're one of the last big mysteries in polymer physics," the researchers write.

While the new kind of pasta is just a bit of fun, Michieletto and Turner's real work involves carrying out computer simulations of ring-shaped polymers, which have shown that if molecules are long enough, they are likely to get so tangled up that that they would appear frozen in place.

If this were true in real life - and there is some evidence to suggest that it is - then they believe they would have discovered a new state of matter, which they have called a "topological glass".

An ordinary glassy material is fashioned when a viscous liquid is cooled far enough that the molecules eventually stop moving and are frozen in place - they maintain the disordered structure of a liquid but develop the mechanical properties of a solid.

Plastic bottles, for example, are glassy materials that are set into shape when ordinary polymers - the building blocks of plastics - are rapidly cooled.

For a "topological glass" made from ring-shaped polymers, the motion of the individual molecules would slow down not just with temperature but also ring length, which Michieletto and Turner believe could inspire novel materials with applications that we cannot yet imagine.

"What would be nice about a topological glass is that its properties would be governed purely by topology, rather than the system-specific chemical details that often control when and how classical glasses form. Physicists love that kind of universal behaviour - in fact, obtaining a universal description of glasses has been a central goal in condensed-matter physics for several decades," they write.

While Michieletto and Turner wait for news on whether they've been granted more supercomputer time to push their simulations to the limit and learn more about these mysterious ring-shaped polymers, they can sit back and pass the time by picking apart a bowl of delicious, home-cooked anelloni.

"[W]hen it comes to eating pasta, the Italians were right all along - you're better off sticking to spaghetti, which you can eat nice and quickly. Make yourself a bowl of anelloni and it's likely to have gone cold by the time you've pulled all the rings apart and struggled your way to the messy end," they conclude.

Also in this issue:

Pyramid puzzle - using muons to find ancient hidden chambers
Early-career test - the challenges of setting up your own physics lab
Christmas books - seeing the unseen, soundscapes and social physics

Please mention Physics World as the source of these items and, if publishing online, please include a hyperlink to: http://physicsworld.com

Notes for editors:

1. Physics World is the international monthly magazine published by the Institute of Physics. For further information or details of its editorial programme, please contact the editor, Dr Matin Durrani, tel +44 (0)117 930 1002. The magazine's website physicsworld.com is updated regularly and contains daily physics news and regular audio and video content. Visit http://physicsworld.com 

2. For copies of the articles reviewed here contact Mike Bishop, IOP Publishing Senior Press Officer, tel: +44 (0)11 7930 1032, e-mail: michael.bishop@iop.org

3. The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application.

We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications.

In September 2013 we launched our first fundraising campaign. Our campaign, Opportunity Physics, offers you the chance to support the work that we do.

Michael Bishop | EurekAlert!

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>