Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists create new kind of pasta to explain mysterious, ring-shaped polymers

01.12.2014

Two physicists from the University of Warwick have taken to the kitchen to explain the complexity surrounding what they say is one of the last big mysteries in polymer physics.

As a way of demonstrating the complicated shapes that ring-shaped polymers can adopt, the researchers have created a brand new type of ring-shaped pasta, dubbed "anelloni" (anello being the Italian word for "ring"), which they've exclusively unveiled in this month's Physics World.


This image shows a bowl of anelloni, consisting of ring-shaped spaghetti made from linguine.

Credit: Davide Michieletto

With just 2 eggs and 200 g of plain flour, Davide Michieletto and Matthew S Turner have created large loops of pasta that, when cooked and thrown together in a bowl, get hugely tangled up, in much the same way that ring-shaped polymers become massively intertwined with each other.

A video of Davide Michieletto showing what it's like to eat this new kind of pasta was taken at the headquarters of Physics World and can be viewed here.

Whereas it's easy when faced with a bowl of normal spaghetti to suck or pull a single strand out, it's much harder to extract a single piece of pasta from a pile of anelloni, which get horribly tangled up.

"The thing about ring-shaped polymers...is that they're very poorly understood - in fact, they're one of the last big mysteries in polymer physics," the researchers write.

While the new kind of pasta is just a bit of fun, Michieletto and Turner's real work involves carrying out computer simulations of ring-shaped polymers, which have shown that if molecules are long enough, they are likely to get so tangled up that that they would appear frozen in place.

If this were true in real life - and there is some evidence to suggest that it is - then they believe they would have discovered a new state of matter, which they have called a "topological glass".

An ordinary glassy material is fashioned when a viscous liquid is cooled far enough that the molecules eventually stop moving and are frozen in place - they maintain the disordered structure of a liquid but develop the mechanical properties of a solid.

Plastic bottles, for example, are glassy materials that are set into shape when ordinary polymers - the building blocks of plastics - are rapidly cooled.

For a "topological glass" made from ring-shaped polymers, the motion of the individual molecules would slow down not just with temperature but also ring length, which Michieletto and Turner believe could inspire novel materials with applications that we cannot yet imagine.

"What would be nice about a topological glass is that its properties would be governed purely by topology, rather than the system-specific chemical details that often control when and how classical glasses form. Physicists love that kind of universal behaviour - in fact, obtaining a universal description of glasses has been a central goal in condensed-matter physics for several decades," they write.

While Michieletto and Turner wait for news on whether they've been granted more supercomputer time to push their simulations to the limit and learn more about these mysterious ring-shaped polymers, they can sit back and pass the time by picking apart a bowl of delicious, home-cooked anelloni.

"[W]hen it comes to eating pasta, the Italians were right all along - you're better off sticking to spaghetti, which you can eat nice and quickly. Make yourself a bowl of anelloni and it's likely to have gone cold by the time you've pulled all the rings apart and struggled your way to the messy end," they conclude.

Also in this issue:

Pyramid puzzle - using muons to find ancient hidden chambers
Early-career test - the challenges of setting up your own physics lab
Christmas books - seeing the unseen, soundscapes and social physics

Please mention Physics World as the source of these items and, if publishing online, please include a hyperlink to: http://physicsworld.com

Notes for editors:

1. Physics World is the international monthly magazine published by the Institute of Physics. For further information or details of its editorial programme, please contact the editor, Dr Matin Durrani, tel +44 (0)117 930 1002. The magazine's website physicsworld.com is updated regularly and contains daily physics news and regular audio and video content. Visit http://physicsworld.com 

2. For copies of the articles reviewed here contact Mike Bishop, IOP Publishing Senior Press Officer, tel: +44 (0)11 7930 1032, e-mail: michael.bishop@iop.org

3. The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application.

We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications.

In September 2013 we launched our first fundraising campaign. Our campaign, Opportunity Physics, offers you the chance to support the work that we do.

Michael Bishop | EurekAlert!

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>