Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Couple Distant Nuclear Spins Using a Single Electron

12.07.2016

For the first time, researchers at the University of Basel have coupled the nuclear spins of distant atoms using just a single electron. Three research groups from the Department of Physics took part in this complex experiment, the results of which have now been published in the journal Nature Nanotechnology.

In most materials, the nuclear spins of neighboring atoms have only a very weak effect on one another, as the tiny nuclei are located deep within the atoms. This is not the case in metals, however, where some of the electrons are able to move freely. The electron spins are able to couple nuclear spins at relatively large distances from one another. Named after four physicists, this RKKY interaction was discovered in the 1950s.


Art view of a semiconductor InAs/GaAs quantum dot (In, Ga and As respectively in yellow, blue and purple). Two remote nuclear spins (yellow arrows) are coupled via the spin of an electron delocalized over the quantum dot (red). (Image: University of Basel, Department of Physics)

Nuclear spins linked by an individual electron spin

Now, an experiment by researchers from the Department of Physics at the University of Basel has for the first time succeeded in demonstrating this mechanism with a single electron, describing it using quantum theory. The team led by Prof. Richard Warburton trapped a single electron inside a quantum dot.

With use of a method developed in Basel to measure nuclear spin resonance, they showed that the electron coupled the spins of nuclei up to five nanometers apart – a huge distance in the world of nuclear spins. The results are particularly relevant to the development of spin qubits: these seek to use electron spins to carry information, but the interaction with the nuclei limits the stability of the quantum information.

Concentrated blast of physics

“This is probably the most complicated experiment our team has ever carried out,” says Prof. Richard Warburton, leader of the nano-photonics research group at the Department of Physics in Basel. At the same time, he expressed his delight at the cooperation between the three research groups that made this experiment possible. “There were so many different aspects to take into account – a challenge we were able to master only thanks to the fantastic collaborations in our department.”

The research group led by Prof. Martino Poggio provided the expertise in the field of nuclear spin resonance, while the team led by Prof. Daniel Loss spent months computing the quantum theory for the experiment. A vital contribution also came from Ruhr University Bochum, which manufactured the semiconductor chips for the experiment.

The project received funding from the National Center of Competence in Research Quantum Science and Technology (NCCR QSIT), the Swiss National Science Foundation and the Swiss Nanoscience Institute.

Original article

Gunter Wüst, Mathieu Munsch, Franziska Maier, Andreas V. Kuhlmann, Arne Ludwig, Andreas D. Wieck, Daniel Loss, Martino Poggio and Richard J. Warburton
Role of the electron spin in the nuclear spin coherence in a quantum dot
Nature Nanotechnology (2016), doi: 10.1038/nnano.2016.114

Further information

Prof. Dr. Richard J. Warburton, University of Basel, Department of Physics, tel. +41 61 267 35 60, email: richard.warburton@unibas.ch

Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>