Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photons open the gateway for quantum networks

23.10.2015

There is tremendous potential for new information technology based on light (photons). Photons (light particles) are very well suited for carrying information and quantum technology based on photons -- called quantum photonics, will be able to hold much more information than current computer technology.

But in order to create a network with photons, you need a photon contact, a kind of transistor that can control the transport of photons in a circuit. Researchers at the Niels Bohr Institute in collaboration with researchers from the Korea Institute of Science and Technology have managed to create such a contact. The results are published in the scientific journal Nature Communications.


Alisa Javadi, a postdoc in the Quantum Photonic research group, has worked with the experiments in the laboratory at the Niels Bohr Institute, University of Copenhagen.

Credit: Ola Jakup Joensen, Niels Bohr Institute, University of Copenhagen

Quantum information can be sent optically, that is to say, using light, and the signal is comprised of photons, which is the smallest component (a quantum) of a light pulse. Quantum information is located in whichever path the photon is sent along -- it can, for example, be sent to the right or to the left on a semi-transparent mirror.

It can be compared to the use of bits made up of 0s and 1s in the world of conventional computers. But a quantum bit is more than a classical bit, since it is both a 0 and a 1 at the same time and it cannot be read without it being detected, as it is only a single photon. In addition, quantum technology can be used to store far more information than conventional computer technology, so the technology has much greater potential for future information technology.

Controlling the light

Light normally spreads in all directions. But in order to develop quantum technology based on light, you need to be able to control light down to the individual photons. Researchers in the Quantum Photonic research group at the Niels Bohr Institute are working on this and to do so, they use an optical chip embedded with a so-called quantum dot.

The optical chip is made up of an extremely small photonic crystal, which is 10 microns across (1 micron is a thousandth of a millimetre) and has a thickness of 160 nanometers (1 nanometer is a thousandth of a micron). Embedded in the middle of the chip is a so-called quantum dot, which is comprised of a collection of atoms.

"We have developed the photonic chip so that the quantum dot emits a single photon at a time and we can control the photon's direction. Our big new achievement is that we can use the quantum dot as a contact for the photons -- a kind of transistor. It is an important component for creating a complex network of photons," explains Peter Lodahl, professor and head of the Quantum Photonic research group at the Niels Bohr Institute at the University of Copenhagen.

'Gateway' for photons

The experiments are carried out in the research group's laboratories, which located in the basement of the Niels Bohr Institute so that there are no tremors from the road or disruptive ambient light.

They use a laser to produce the photons in the experiment. If the laser is fully dimmed, a single photon is released. If the intensity is increased, there is a greater chance of 2 or more photons at the same time. The number of photons is important for the result.

"If we send a single photon into the quantum dot, it will be thrown back -- the gateway is closed. But if we send two photons, the situation changes fundamentally -- the gateway is opened and the two photons become entangled and are sent onwards," explains Alisa Javadi, who is a postdoc in the research group and has worked with the experiments in the laboratory at the Niels Bohr Institute.

So the quantum dot works as a photon contact and this is an important component when you want to build complex quantum photonic circuits on a large scale.

###

Contact:
Peter Lodahl Professor
45-2056-5303
lodahl@nbi.ku.dk
Head of the Quantum Photonic research group at the Niels Bohr Institute at the University of Copenhagen

Søren Stobbe
45-3532-5216
stobbe@nbi.ku.dk
Associate Professor in the Quantum Photonic research group at the Niels Bohr Institute at the University of Copenhagen.

Alisa Javadi,
45-6065-6769
javadi@nbi.ku.dk
Postdoc in Quantum Photonic research group at the Niels Bohr Institute at the University of Copenhagen.

Media Contact

Gertie Skaarup
skaarup@nbi.dk
45-28-75-06-20

http://www.nbi.ku.dk/english/press_and_media/ 

Gertie Skaarup | EurekAlert!

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>