Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Photons open the gateway for quantum networks


There is tremendous potential for new information technology based on light (photons). Photons (light particles) are very well suited for carrying information and quantum technology based on photons -- called quantum photonics, will be able to hold much more information than current computer technology.

But in order to create a network with photons, you need a photon contact, a kind of transistor that can control the transport of photons in a circuit. Researchers at the Niels Bohr Institute in collaboration with researchers from the Korea Institute of Science and Technology have managed to create such a contact. The results are published in the scientific journal Nature Communications.

Alisa Javadi, a postdoc in the Quantum Photonic research group, has worked with the experiments in the laboratory at the Niels Bohr Institute, University of Copenhagen.

Credit: Ola Jakup Joensen, Niels Bohr Institute, University of Copenhagen

Quantum information can be sent optically, that is to say, using light, and the signal is comprised of photons, which is the smallest component (a quantum) of a light pulse. Quantum information is located in whichever path the photon is sent along -- it can, for example, be sent to the right or to the left on a semi-transparent mirror.

It can be compared to the use of bits made up of 0s and 1s in the world of conventional computers. But a quantum bit is more than a classical bit, since it is both a 0 and a 1 at the same time and it cannot be read without it being detected, as it is only a single photon. In addition, quantum technology can be used to store far more information than conventional computer technology, so the technology has much greater potential for future information technology.

Controlling the light

Light normally spreads in all directions. But in order to develop quantum technology based on light, you need to be able to control light down to the individual photons. Researchers in the Quantum Photonic research group at the Niels Bohr Institute are working on this and to do so, they use an optical chip embedded with a so-called quantum dot.

The optical chip is made up of an extremely small photonic crystal, which is 10 microns across (1 micron is a thousandth of a millimetre) and has a thickness of 160 nanometers (1 nanometer is a thousandth of a micron). Embedded in the middle of the chip is a so-called quantum dot, which is comprised of a collection of atoms.

"We have developed the photonic chip so that the quantum dot emits a single photon at a time and we can control the photon's direction. Our big new achievement is that we can use the quantum dot as a contact for the photons -- a kind of transistor. It is an important component for creating a complex network of photons," explains Peter Lodahl, professor and head of the Quantum Photonic research group at the Niels Bohr Institute at the University of Copenhagen.

'Gateway' for photons

The experiments are carried out in the research group's laboratories, which located in the basement of the Niels Bohr Institute so that there are no tremors from the road or disruptive ambient light.

They use a laser to produce the photons in the experiment. If the laser is fully dimmed, a single photon is released. If the intensity is increased, there is a greater chance of 2 or more photons at the same time. The number of photons is important for the result.

"If we send a single photon into the quantum dot, it will be thrown back -- the gateway is closed. But if we send two photons, the situation changes fundamentally -- the gateway is opened and the two photons become entangled and are sent onwards," explains Alisa Javadi, who is a postdoc in the research group and has worked with the experiments in the laboratory at the Niels Bohr Institute.

So the quantum dot works as a photon contact and this is an important component when you want to build complex quantum photonic circuits on a large scale.


Peter Lodahl Professor
Head of the Quantum Photonic research group at the Niels Bohr Institute at the University of Copenhagen

Søren Stobbe
Associate Professor in the Quantum Photonic research group at the Niels Bohr Institute at the University of Copenhagen.

Alisa Javadi,
Postdoc in Quantum Photonic research group at the Niels Bohr Institute at the University of Copenhagen.

Media Contact

Gertie Skaarup

Gertie Skaarup | EurekAlert!

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>