Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photonic Crystal Nanolaser Biosensor Simplifies DNA Detection

14.01.2015

New device offers a simpler and potentially less expensive way to detect DNA and other biomolecules through changes in surface charge density or solution pH

A simple method to sense DNA, as well as potential biomarker proteins of cancer or other diseases such as Alzheimer’s, may soon be within reach – thanks to the work of a team of Yokohama National University researchers in Japan.


Toshihiko Baba/Yokohama National University

This image shows a top view of the group’s nanolaser, in which the center narrow slot (horizontal line) is the main part of the sensor. The periodic holes form a photonic crystal, and although the size of the holes appears to fluctuate they’ve been intentionally modified so the laser’s emission is effectively extracted to the top.

As the team reports in Applied Physics Letters, from AIP Publishing, they created a photonic crystal nanolaser biosensor capable of detecting the adsorption of biomolecules based on the laser’s wavelength shift.

Equally impressive, the nanolaser biosensor enables detection of the surface charge from its laser emission intensity, which in turn can also be used to sense the adsorption of biomolecules. Using laser intensity to detect biomolecules is potentially less expensive than the fluorescent tagging or spectroscopy techniques typically used in biosensors because it is a simpler procedure.

When the team first set out to explore photonic crystal nanolaser sensors, they weren’t focusing on the intensity of the laser emission because it’s sensitive to the quality of the fabricated laser and, frankly, they didn’t expect it to show sensing signals.

“In the beginning we focused on wavelength behavior, but quickly noticed that [the laser emission] intensity is influenced by both pH and polymers,” noted Toshihiko Baba, a professor in Yokohama National University’s Department of Electrical and Computer Engineering. “Our results were very reproducible and, interestingly, we found that the behaviors of the wavelength and intensity are independent.”

The team was surprised by these results, which they discovered when they deposited a protective film of thin zirconium dioxide (ZrO2) over the device using atomic layer deposition, and then tried sensing in liquids of high or low pH and liquids containing charged polymers. The coating was necessary to protect the nanolaser from damage and unwanted wavelength drift.

The nanolaser device can sense surface charge because the surface charge changes the occupancy rate of electrons at the surface states in the semiconductor of the nanolaser, Baba explained. “This modifies the semiconductor’s emission efficiency.”

So far, the team’s work is the first report of the detection of surface charges using such photonic sensors. “It enables detection of the adsorption of biomolecules from the nanolaser biosensor both in terms of wavelength and intensity,” Baba said. Since it involves different physical parameters, the researchers can examine the details of the biomolecules.

It also “enables detection of the adsorption by measuring only its intensity, which is a significant advantage compared to conventional methods,” Baba added.

One conventional biosensing method “relies on fluorescent labels that are functionalized to biomolecules in advance,” he elaborated. “We can easily see the target biomolecules by using photoexcitation, which is the de facto standard method used today in bioscience and medical diagnoses.” The downside? The functionalization process of the fluorescent labels is expensive.

For this reason, many research groups have developed label-free methods such as those using resonance in optical cavities and plasmonic states. However, these require spectral analyses using spectroscopy of wavelength or resonance optical angle – also expensive.

By contrast, the team’s nanolaser biosensor needs neither labels nor spectrometers if they use the intensity change. This greatly simplifies detection, which they’ve already demonstrated in the case of DNA.

Among the many potential applications for the nanolaser biosensor, the team hopes “to apply it to sensing DNA, biomarker proteins of cancer, Alzheimers, etc., from human bodily fluids such as blood – as a simpler procedure than any others before now,” noted Baba. “Next we’ll be investigating the sensitivity, selectivity, and stability of this phenomenon. If these issues can be cleared, it will move another step toward practical use.”

“Our research project, which runs from 2012 to 2016, ultimately targets the development of a photonic crystal nanolaser sensor for biomarker detection,” said Baba. “We’re working to further simplify and improve the sensor so that it will be ready for practical use within a few years.”

The team’s work is funded by a research grant from the Ministry of Education, Culture, Sports, Science, and Technology in Japan.

The article, "Simultaneous detection of refractive index and surface charges in nanolaser biosensors," is authored by Keisuke Watanabe, Yoji Kishi, Shoji Hachuda, Takumi Watanabe, Mai Sakemoto, Yoshiaki Nishijima and Toshihiko Baba. It will be published in the journal Applied Physics Letters on January 13, 2015 (DOI: 10.1063/1.4904481). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/apl/106/2/10.1063/1.4904481

The authors of this paper are affiliated with Yokohama National University.

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org

Contact Information
Jason Socrates Bardi
American Institute of Physics
jbardi@aip.org
240-535-4954
@jasonbardi

Jason Socrates Bardi | newswise

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>