Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Performance degradation mechanism of a helicon plasma thruster


Towards high-performance electrodeless electric propulsion in space

A part of the performance degradation mechanism of the advanced, electrodeless, helicon plasma thruster with a magnetic nozzle, has been revealed by the research group of Dr. Kazunori Takahashi and Prof. Akira Ando at Tohoku University's Department of Electrical Engineering.

(a) Photograph of the helicon plasma thruster at Tohoku University. (b) The measured plasma pressure profile and the particle dynamics relating to the loss of axial momentum loss.

Credit: Kazunori Takahashi

An electric propulsion device is a main engine, and a key piece of technology for space development and exploration. Charged particles are produced by electric discharge and accelerated, i.e. momentum is transferred to them via electromagnetic fields. The thrust force is equivalent to the momentum exhausted by the device, and the spacecraft can thus be propelled into space.

Mature electric propulsion devices such as ion engines, hall thrusters and magnetoplasmadynamic thrusters have electrodes exposed to the plasmas. Ion sputtering and erosion damage these exposed electrodes over time.

For propulsion systems that are used over a long period, electrodeless propulsion devices have been suggested and rigorously researched as an alternative option. These are represented by the Variable Specific Impulse Magneto-plasma Rocket (VASIMR) and the helicon plasma thruster.

In the helicon plasma thruster concept, the charged particles in a high density helicon plasma source is guided to the open source exit and accelerated by the magnetic nozzle via a magnetic expansion process. Various gain and loss processes of the particle momentum occur in the thruster, significantly affecting the propulsive performance, where the thrust force is equivalent to the momentum exhausted from the system.

It has been considered that the major momentum loss occurs at the source lateral wall, where the "radial" momentum is transferred to the wall via an electrostatic ion acceleration in the plasma sheath. This might be true. Although the loss of the axial momentum there has been treated as negligible, data from experiments clearly show the presence of the "axial" momentum lost to the lateral wall, which is transferred by the radially lost ions.

This significant axial momentum loss seems to have originated from the internal axial electric field in the plasma core, which appears to be more enhanced by the highly ionized plasmas for the future high power operation of the helicon plasma thruster. More detailed understanding of the plasma dynamics will hopefully lead to further development of the advanced high power and electrodeless electric propulsion device.

The detailed observations of the momentum loss will be published by the American Physical Society in their journal Physical Review Letters on May 8.

Media Contact

Dr. Kazunori Takahashi


Dr. Kazunori Takahashi | EurekAlert!

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>