Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn physicists discover why drying liquid crystal drops leave unusual 'coffee rings'

31.05.2017

In previous papers, University of Pennsylvania physicists investigated the "coffee ring effect," the ring-shaped stain of particles left after drops of coffee evaporate. In one paper, they learned how to undo this effect by altering particle shape. Now, in a new paper published in Nature Communications, they have uncovered the complex and remarkably different behavior arising in a liquid crystal drop that is drying.

The research, carried out in collaboration with scientists at Lehigh University and Swarthmore College, reveals novel behavior characteristics of liquid crystals, fluids with aligned phases of constituent molecules. The formation of different phases during drying leads to dramatically different fluid movement and solid deposition and also provides insight needed for the control of drying solutions of macromolecules that occur in many dyes and pharmaceutical formulations.


This is a close-up of the drying progression of Sunset Yellow.

Credit: University of Pennsylvania

Penn alumnus Zoey Davidson, now a postdoc at the Max Planck Institute for Intelligent Systems in Germany, had been experimenting with Sunset Yellow, a dye that gives Doritos and orange soft drinks their bright colors, when he accidentally spilled some of the material.

"I noticed that the spill pattern left behind by the drop was sort of similar to coffee-patterns we had studied before, but there were also differences," Davidson said. "The drying drops had a macroscopically visible interior structure, too."

Davidson, along with Arjun Yodh, director of the Laboratory for Research on the Structure of Matter and the James M. Skinner Professor of Science in the Department of Physics & Astronomy in the School of Arts & Sciences at Penn, and Peter Collings of Swarthmore, an adjunct professor at Penn, then decided to investigate this in a more controlled fashion. Penn Professor Randall Kamien, undergraduate alumnus Adam Gross and postdocs Angel Martinez and Tim Still also contributed to the study. The group collaborated with Chao Zhou of Lehigh and his Ph.D. student Yongyang Huang.

Unlike the particles in a coffee drop, the liquid crystal drop they studied was a solution of Sunset Yellow molecules that spontaneously combine to form rod-like macromolecular assemblies, similar to how rod-like molecules order to form the liquid crystals used in LCDs.

"Liquid crystals are a phase of matter," Collings said, "just like the more well-known solid, liquid and gas phases. They are fluids, which means they take the shape of their container, but unlike liquids there is some order among the constituents that make up the substance. So, although the constituents diffuse around much like what happens in liquids, they maintain some orientational and sometimes positional order."

While the liquid crystals used in LCDs, called thermotropic liquid crystals, are made of molecules with nothing else added, the liquid crystals used in this experiment were chromonic liquid crystals. Chromonic liquid crystals consist of assemblies of molecules dispersed in liquid water.

During drying, the Sunset Yellow concentration varied within the drop, and microscope images revealed the formation of different fluid phases such as the isotropic liquid (random), liquid crystal nematic (aligned) and liquid crystal columnar (cylindrically packed) phases that segregate to different regions of the drop.

"When you look at the drop over time," Yodh said, "it's not uniform; it has a lot of structure."

The central region of the drop was isotropic, and it was surrounded by the aligned nematic phase. The boundary between the two phases moved toward the center as the droplet dried, and then other regions with different structures appeared, such as the columnar and crystal phases.

"It's a qualitative jump to go from a drop that is one phase that just gets more concentrated," Yodh said, "to a drop that can change into several different phases depending on concentration. The different phases segregate and affect the viscosity and convection in different regions of the drop."

They noticed unusual dynamics in the drying process but found it difficult to discern these processes with simple microscopies. Thus they joined forces with Zhou and Huang to employ optical coherence microscopy to track the flow inside of the droplets. The new microscope revealed circular flow patterns, or Marangoni currents, circulating in a direction opposite to that seen in other solutions. This circulation anomaly was due to the unusual surface tension properties of Sunset Yellow.

Because evaporation happens fastest at an outer edge in a drying drop of coffee, solid material inside the drop is transported from the center of the droplet to the outer edge, bringing more and more coffee grains with it.

"These coffee grains accumulate at the edge," Collings said, "and after the drop has completely dried a nice, dark ring of coffee particles results."

In the end, deposition from the drying liquid crystal drop was not ring-like or uniform.

"In many cases," Collings said, "the existence of liquid crystal phases raises the viscosity and lowers the speed material moves at, so the final shape looks like a volcano or sunken souffle."

Although there have been other investigations in which multiple phases arise in drying and evaporating drops, especially near the drop edge, this is the first time researchers have investigated multiple liquid crystal phases and understood how viscoelastic effects and other properties of liquid crystals affect the final drying deposition pattern.

"We're pushing a frontier," said Yodh, "We know that lots of systems actually can have these properties, and this research is important if you want to understand what they're going to do."

Many technologies depend on depositing material in a precise way through the evaporation of a solvent. Since liquid crystal-like phases are common among dyes and pharmaceuticals, this research could have potential applications down the line.

"One need only think about ink-jet printing," Collings said, "to realize an extremely common and useful example. If such processes involve substances that form liquid crystal phases, as many dyes and drugs do, then the understanding gained through our experiments is going to be important in achieving whatever results are desired."

But much of the importance of this work lies in the realm of basic science.

"Our newfound understanding of how droplets of another class of materials dry," Collings said, "substantiates some concepts developed before but also extends our knowledge into realms where the behavior is different."

The researchers hope to follow up on some of the interesting observations they made about the structures that form as the material dries.

"The patterns of material that form," Yodh said, "are influenced both by traditional equilibrium thermodynamics and by fluid convection and new structures with novel locked topologies form as a result."

To be able to control this phenomenon would be an exciting next step.

"That's the funny thing about watching paint dry," Davidson said. "There's actually all this cool stuff happening inside the drop."

###

This research was supported by National Science Foundation grants DMR12-05463, DMR12-62047, MRSEC DMR11-20901 and the MRSEC shared experimental optical microscopy facility and DBI-1455613; National Aeronautics and Space Administration Grant NNX08AO0G; and a Simons Investigator grant from the Simons Foundation.

Ali Sundermier | EurekAlert!

Further reports about: droplet drying evaporation fluids liquid crystal liquids

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>