Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OSIRIS-REx's First Instrument Arrives for Integration Into the Spacecraft

29.06.2015

A journey that will stretch millions of miles and take years to complete begins with a short trip to a loading dock.

The first of five instruments for a spacecraft that will collect a sample from an asteroid and bring it back to Earth has arrived at the Lockheed Martin Space Systems facility in Littleton, Colorado, for its installation onto NASA's Origins Spectral Interpretation Resource Identification Security-Regolith Explorer, or OSIRIS-REx, spacecraft.

Led by the University of Arizona, OSIRIS-REx is the first U.S. mission to fly to, study and retrieve a pristine sample from an asteroid and return it to Earth for study. Scheduled to launch in September 2016, the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023.

The mission will allow scientists to investigate the composition of material from the very earliest epochs of solar system history, providing information about the source of organic materials and water on Earth.

The OSIRIS-REx Thermal Emission Spectrometer, or OTES, will conduct surveys to map mineral and chemical abundances and to take the asteroid Bennu's temperature. OTES is the first such instrument built entirely on the Arizona State University campus.

"It is a significant milestone to have OSIRIS-REx's first instrument completed and delivered for integration onto the spacecraft," said Dante Lauretta, principal investigator for OSIRIS-REx at the UA's Lunar and Planetary Laboratory. "The OTES team has done an excellent job on the instrument and I deeply appreciate their scientific contribution to the mission. OTES plays an essential role in characterizing the asteroid in support of sample-site selection."

OTES is one of five instruments from national and international partners. These instruments will be key to mapping and analyzing Bennu's surface and will be critical in identifying a site from which a sample can be safely retrieved and ultimately returned to Earth.

"OTES, the size of a microwave oven, has spent the last several years being designed, built, tested and calibrated," says Philip Christensen, OTES instrument scientist at ASU. "Now OTES is shipping out for the solar system."

The instrument will be powered on shortly after the OSIRIS-REx spacecraft begins its two-year trip to the asteroid Bennu. On arrival at Bennu, OTES will provide spectral data for global maps used to assess potential sample sites. It will take thermal infrared spectral data every two seconds and will be able to detect temperatures with an accuracy of 0.2 degrees Fahrenheit. It also will detect the presence of minerals on the asteroid's surface.

The OSIRIS-REx Camera Suite, or OCAMS, consists of three cameras that will image Bennu during approach and proximity operations. Scientists and engineers at the UA's Lunar and Planetary Lab designed and built OCAMS to image Bennu over nine orders of magnitude in distance, from one million kilometers (more than 620,000 miles) down to two meters (6.5 feet).

PolyCam, the largest camera of the OCAMS suite, is both a telescope — acquiring the asteroid from far away while it is still a point of light — and a microscope capable of scrutinizing the pebbles on Bennu's surface. MapCam will map the entire surface of Bennu from a distance of three miles, and the Sampling Camera, or SamCam, is designed to document the sample acquisition. The OCAMS instrument suite is scheduled to be installed on the spacecraft in September.

The OSIRIS-REx Laser Altimeter, or OLA, will scan Bennu to map the entire asteroid surface, producing local and global topographic maps. OLA is a contributed instrument from the Canadian Space Agency.
The OSIRIS-REx Visible and Infrared Spectrometer, or OVIRS, measures visible and infrared light from Bennu, which can be used to identify water and organic materials. The instrument is provided by NASA's Goddard Space Flight Center.

A student experiment called the Regolith X-ray Imaging Spectrometer, or REXIS, will map elemental abundances on the asteroid. REXIS is a collaboration between the students and faculty of the Massachusetts Institute of Technology and Harvard College Observatory.

"The next few months will be very busy as we begin integrating the instruments and prepare for the system-level environmental testing program to begin," said Mike Donnelly, OSIRIS-REx project manager at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

NASA's Goddard Space Flight Center provides overall mission management, systems engineering and safety and mission assurance for OSIRIS-REx. The UA's Lauretta is the mission's principal investigator. Lockheed Martin Space Systems in Denver is building the spacecraft. OSIRIS-REx is the third mission in NASA's New Frontiers Program. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages New Frontiers for the agency's Science Mission Directorate in Washington, D.C.
 
Media contacts:
Erin Morton
OSIRIS-REx Communications
520-269-2493
morton@orex.lpl.arizona.edu
Daniel Stolte
UA University Relations, Communications
520-626-4402
stolte@email.arizona.edu

The University of Arizona, the state's super land-grant university with two medical schools, produces graduates who are real-world ready, through its 100% engagement initiative. Recognized as a global leader for the employability of its graduates, UA is also a leader in research, bringing more than $580 million in research investment each year, ranking 19 among all public universities. UA is advancing the frontiers of interdisciplinary scholarship and entrepreneurial partnerships, and is a member of the Association of American of Universities, the 62 leading public and private research universities. It benefits the state with an estimated economic impact of $8.3 billion annually.

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>