Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optoelectronic Inline Measurement – Accurate to the Nanometer

14.06.2017

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products


INSPIRE sensors for testing shape and positional tolerances on camshafts.

Fraunhofer ILT, Aachen, Germany.

Implementing innovative concepts, such as for more efficient engines, mostly accompanies with advances in manufacturing technologies. Production tolerances of modern plants thus suffice to process metal components in the micrometer range and are just a thousandth of a millimeter thick. At the same time, a plant must be highly flexible so it can compensate for any fluctuations in raw materials and manufacture a wide range of products. That is why production technology’s next aim is to have plants that can manufacture individual components with the precision and at the cost of mass production.

Laser Measurement Technology as a Key Component

Sensors that can work precisely and reliably even under unfavorable conditions are paramount to monitoring and regulating such manufacturing processes. Interferometers are used under laboratory conditions to measure the shape of components with the highest precision – for example, thickness of sheet metal, roundness of rollers, and eccentricity of waves. In fact, Interferometers are so precise that they can be used to determine not just the component’s shape but also its surface roughness.

Sensors with Digitized Expert Knowledge

To this end, an interferometer’s settings must be adapted precisely to the measurement task at hand. This especially requires correct exposure time and focus; similar to taking a photo. In April this year, the collaborative project INSPIRE was started with the aim of developing an interferometer that can adapt to varying measuring conditions. “The sensors will have digitized expert knowledge and can autonomously optimize the settings,” explains Dr. Hölters from Fraunhofer ILT in Aachen. He coordinates the INSPIRE project, in which four other small and medium-sized enterprises are participating. With the development of fast control electronics, the sensors can adapt to rapidly changing measuring conditions within microseconds. This development will benefit conventional processes such as the cold rolling of sheet metal as well as machining processes such as welding.

Collaborative Project INSPIRE

The project idea of “Interferometric Distance Sensors with Automated Subsystems for Precision Inline Measurement to Regulate Automated Manufacturing Processes,” which in German produces the acronym INSPIRE, convinced the German Federal Ministry of Education and Research (BMBF) to pledge half the funding for the three-year long collaborative project as part of the “Digital Optics” funding initiative. Companies participating in the INSPIRE project are LSA – Laser Analytical Systems & Automation GmbH and Beratron GmbH from Aachen, HIGHYAG Lasertechnologie GmbH from Kleinmachnow, and Friedrich Vollmer Feinmessgerätebau GmbH from Hagen.

Contact

Dr. rer. nat. Stefan Hölters
Clinical Diagnostics and Microsurgical Systems Group
Phone +49 241 8906-436
stefan.hoelters@ilt.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/2J5
http://www.ilt.fraunhofer.de/en

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: ILT INSPIRE Inline Laser Lasertechnik Manufacturing Nanometer Sensors

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

Rochester scientists discover gene controlling genetic recombination rates

23.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>