Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One year in space: University satellite proves its durability

27.11.2014

UWE-3, the satellite developed by the University of Würzburg, is a technical marvel: On November 21, it has been in space for exactly a year – and it is still functioning perfectly. This is an extraordinary feat given the harsh conditions in outer space and the fact that the satellite was built solely from commercial components.

UWE-3 is one of a new generation of experimental satellites developed by the University of Würzburg (short: UWE): This mini-satellite is even more compact and efficient than its predecessors. Since 21 November 2013, UWE-3 has orbited Earth at an altitude of 600 kilometres.


The Würzburg satellite UWE-3 has been running smoothly in space for over a year now.

(Photo: Department of Computer Science VII)

The cube, which weighs around a kilogramme and has an edge length of ten centimetres, was designed and built by Würzburg students, in particular by members of the SpaceMaster programme as well as doctoral candidates.

The satellite's on-board data processing system has been working non-stop for a year now – "and that despite the fact that it has undoubtedly been exposed to very strong cosmic radiation," says Klaus Schilling, professor of computer science at the department where UWE-3 was developed.

Radiation-tolerant thanks to software

Consisting solely of commercial components which are not radiation-hardened, the satellite's uninterrupted one-year operation is made possible by an advanced fault analysis and correction programme. "This 'software-based radiation tolerance' is an innovative approach to implement highly reliable data processing systems on Earth as well," Schilling explains.

Most other mini-satellites that were launched into space in 2013 on the same rocket as UWE-3 have already failed or accomplished their tasks with major interruptions only.

UWE-3 a product of international cooperation

The UWE-3 project has opened up interesting perspectives in international cooperation for the Würzburg scientists such as, for example, with aeronautics university associations worldwide like UNISECglobal and the Space University Advisory Committee.

The collaboration with the global community of amateur radio operators (AMSAT) has been particularly fruitful. At first, the amateur radio operators e-mailed the telemetry data to Würzburg - today, however, they are streaming the data live into the Würzburg database over the Internet. "As a result, our database has grown by more than 65,000 additional data records from all over the world," Schilling further.

What are the satellite's tasks?

The UWE platform has allowed the Würzburg team to successfully demonstrate a highly miniaturised on-board position detection and control system for the first time. The system determines the satellite's orientation based on data collected by gyroscopes, magnetometers and solar sensors with an accuracy of a few degrees. Like a compass it aligns with Earth's magnetic field in a highly efficient process that uses magnetic field coils.

In combination with a very small reaction wheel, the computer scientists were able to perform numerous experiments on satellite alignment control using different software variants. According to their forecast, the results will be significant for later observations of Earth's surface through mini-satellites.

The software functions also allow the intensity and the global distribution of malfunctions in the frequently used UHF frequency band to be characterised with greater accuracy in order to further improve the communication link for future UWE missions.

New goals for UWE mission now

Having successfully completed the experiments in orbit, UWE-3 will continue its operation beyond the originally planned mission duration of three months with new goals – thanks to an extensive expansion of the on-board software programmed from Earth.

This was possible due to the redundant design of the microprocessor system for on-board data processing which allowed the Würzburg team to install software updates without jeopardising the running operation. Additional software expansions for the Würzburg satellite are planned for 2015 – and the scientists are confident that the small machine will continue to run smoothly until then.

Contact

Prof. Dr. Klaus Schilling, Department of Computer Science VII (Robotics and Telematics), Phone +49 931 31-86647, schi@informatik.uni-wuerzburg.de


Weitere Informationen:

http://www.luft-und-raumfahrt.informatik.uni-wuerzburg.de/  Bachelor programme "Luft- und Raumfahrtinformatik"
http://www.spacemaster.uni-wuerzburg.de/  Master programme "Space Science and Technology"

Robert Emmerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>