Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One impurity to bind them all

02.06.2016

MPQ researchers show that a single atomic impurity is able to trap infinitely many bosons around it.

Nobody is perfect, but sometimes it is the defect that makes the difference. For example, the electric properties of semiconductors undergo significant changes by the slightest variation in the dopant concentration, and though a perfect diamond is without any colour, atomic impurities make them shine in pale blue, violet or pink which even enhances their value.


Illustration of the trapping process: a two-level atomic impurity is localized in a periodic structure. Because the atomic frequency lies in the bandgap of the material the photons that are released after excitation of the atom are trapped inside the structure. Graphic: MPQ, Theory Division

All these effects go back to processes that are triggered by the interaction of the impurity with the quantum many-body system it is embedded in. A team of physicists in the Theory Division of Prof. Ignacio Cirac at the Max Planck Institute of Quantum Optics (MPQ) has now investigated the more general case where an impurity atom is coupled to a structured bath of bosons (for example, photons in a periodically engineered dielectric) showing how a single atom can bind many bosons around it.

Bound states of bosons are of particular interest because they give rise to long and strong interactions enabling new regimes for quantum simulations. (Phys. Rev. X 6, 021027 (2016), 25 May 2016).

The interaction of spin impurities with bosonic reservoirs lies at the heart of very paradigmatic models in Quantum Optics and Condensed Matter and gives rise to very rich phenomena. For example, in the context of atoms coupled to engineered dielectrics, i.e., photonic crystals, it was predicted that a single atom can localize a single-photon cloud around it if the atomic frequency lies in the photonic bandgap of the material.

With the recent advances in interfacing atomic systems with photonic crystal structures, these atom-photon bound states have experienced a renewed interest in the context of quantum simulation as they have been proposed to mediate strong and long-range interactions between atoms.

In their newly published work, Tao Shi, Ying-Hai Wu and Alejandro González-Tudela from the Theory Division of Prof. Ignacio Cirac study the general problem of a single spin impurity coupled to a generic bosonic bath and show that a single atom can indeed trap not a single, but infinitely many bosons around it. Loosely speaking, the coupling of the impurity to the bath generates an effective potential to the bosons that is able to localize the bosons around it.

In particular, a single atom can localize a multi-photon cloud around it within a photonic crystal. Moreover, the authors also provide a variational description that allows them to describe their behaviour in all parameter space, unveiling the existence of many different regimes with different scaling of physical properties like the energy or the size of the bound states.

Due to the generality of the model, these bound states can potentially be prepared and observed in many different platforms, ranging from atoms coupled to photonic crystals to circuit QED or even cold atoms in state dependent optical lattices. The existence of these boson bound states spans the possibilities of these platforms to simulate new exotic many-body phenomena. [AGT/OM]

Original publication:

Tao Shi, Ying-Hai Wu, A. González-Tudela, and J. I. Cirac
Bound states in boson impurity models
Phys. Rev. X 6, 021027 (2016), 25 May 2016

Contact:

Prof. Dr. J. Ignacio Cirac
Honorary Professor TU Munich and
Director at Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -705 /-736
Fax: +49 (0)89 / 32 905 -336
E-mail: ignacio.cirac@mpq.mpg.de

Dr. Alejandro González-Tudela
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 -127
E-mail: alejandro.gonzalez-tudela@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Further information:
http://www.mpq.mpg.de/

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>