Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the way to heavy elements – short-lived cadmium isotopes in the trap

15.12.2015

An international research team including scientists from Greifswald succeeded in performing the first determination of the mass of the atomic nuclei of the exotic cadmium isotopes 129Cd, 130Cd und 131Cd. These short-lived particles with half-lives of only fractions of seconds were delivered by the ion-separator ISOLDE at the European research center CERN http://home.cern/ and investigated by use of Penning traps https://en.wikipedia.org/wiki/Penning_trap and a multi-reflection time-of-flight mass spectrometer https://en.wikipedia.org/wiki/Time-of-flight_mass_spectrometry.

The results confirm the expected magic neutron number N=82 and are of significant relevance for simulation studies extending our understanding of the origin of the chemical elements in the region from tin to barium which are found with comparatively high abundances in our Solar System. The results of the measurements and accompanying calculations are reported by the international research journal Physical Review Letters http://journals.aps.org/prl/ in its latest issue (02. Dezember 2015).


Graduate students Dinko Atanasov and Frank Wienholtz on the highest platform of the three-story ISOLTRAP setup in the experimental hall of ISOLDE at CERN

Maxime Mougeot / The photograph can be downloaded and used free of charge in connection with this press release. The name of the photographer has to be mentioned.

We are made of stardust – only hydrogen and helium were around shortly after the big bang; all other elements were and are still produced in the stars. The nuclei of the lower mass elements up to about iron can grow in the center of stars. Above that element, things get more complicated as energy is no longer released in the build-up of heavier elements. On the contrary, energy is used up. Thus, only explosive, i.e., very energetic star processes, such as supernovae or the mergers of neutron stars with black holes, can supply the necessary energies. Under these conditions, further neutrons are attached to the atomic nuclei. In general, the resulting neutron-rich nuclei decay via the so-called beta decay, i.e. a reaction where the nuclei increase their atomic number by the emission of an electron: However, it is still unclear and a topic of intense research as to where and how exactly these processes take place. In this context, experimental data about the nuclei involved are of highest interest. However, these nuclei are often very short-lived and accompanied by large amounts of nuclei of similar masses – which poses big challenges for the experimentalists.

Recently, scientists of the ISOLTRAP collaboration http://isoltrap.web.cern.ch/isoltrap/ which includes researchers of CERNhttp://home.cern/ , of the Max-Planck-Instituts für Kernphysik in Heidelberg https://www.mpi-hd.mpg.de/mpi/start/ , of the Helmholtzzentrums für Schwerionenforschung in Darmstadt https://www.gsi.de/start/aktuelles.htm as well as from universities in Dresden https://tu-dresden.de/ , Greifswald http://www.uni-greifswald.de/ , Istanbul (Turkey) http://www.istanbul.edu.tr/ , Manchester (United Kongdom) http://www.manchester.ac.uk/ and Paris-Sud (France) http://www.u-psud.fr/ succeeded in con-tributing important experimental results for the simulation of possible nuclear-synthesis scenarios. This input data was then used by theoreticians of the Free University of Brussels http://www.vub.ac.be/en/ and the Max-Planck-Institute for Astrophysics at Garching http://www.mpa-garching.mpg.de/ for such simulations of the nuclear reactions.

Like with the electrons in the atomic shell, the protons and neutrons, i.e. the constituents of the atomic nucleus, are found in energetic shells. Whenever such a shell has just been filled up, the nucleus is particularly stable and the corresponding proton and neutron numbers are called magic numbers. An example of a magic neutron number is N=82. As cadmium nuclei are defined to have Z=48 protons, a special configuration of neutrons is found for this element at mass number A=Z+N=130. Due to their enhanced stability, nuclei with magic numbers are very often produced in the explosive stellar phases, which leads to a relatively high abundance, even during the continuous transmutation processes. Because of their enhanced presence, they are called waiting-point nuclei. After the stellar explosion, these waiting-point nuclei beta-decay into the region of the periodic table of elements mentioned above – with enhanced abundances at the mass numbers around A=130.

Up until the present studies, only the nuclear mass of 130Cd was known, and this only in-directly from nuclear reactions. The masses of the neighboring isotopes 129Cd and 131Cd had not been measured at all. Now, the ISOLTRAP collaboration succeeded in the first such measurements, made possible by a multi-refection time-of-flight mass spectrometer, a contribution from the University of Greifswald. It was operated in two different application modes, which had been introduced recently in other experiments (see the press releases “Laboratory Mass Measurement deepens Insight into Neutron Star“ https://idw-online.de/en/news516628 , “Ion ping pong reveals forces in atomic nuclei“ https://idw-online.de/en/news539611 and “Ion Pingpong confirms magic neutron number of exotic atomic nuclei“ https://idw-online.de/en/news631425 ).

The time-of-flight mass spectrometer was applied for the isotopes 129Cd and 130Cd, which not only live somewhat longer, but are also produced at rates of more than a thousand particles per second, to select the cadmium isotopes from the mixture of more abundant isobars produced at CERN, i.e. atomic nuclei with almost identical mass. Isobars have the same total number of nucleons A=Z+N, differ however, in the individual numbers of the Z protons and N neutrons. The multi-refection time-of-flight mass spectrometer of ISOLTRAP was able to fish the nuclei of interest, 129Cd and 130Cd, from the isobar mixture and thus prepare them for mass spectrometry in a Penning trap. The production rate of the isotope 131Cd, however, was an order of magnitude lower and therefore not sufficient for a Penning-trap experiment in the given measurement time. In this case, the mass measurement itself had to be performed by use of the multi-refection time-of-flight device. Although its relative mass uncertainty is “only” slightly better than one in a million, and thus not as accurate as the Penning trap, the measurement can be performed faster and with less particles.

This allowed the studies to go beyond the magic neutron number. This new achievement is of particular importance, as the energetic distance between the filled neutron shell and the following shell is only accessible with the 131Cd mass value, as 131Cd places a first neutron in this new shell. In other words, we now know the energy that is necessary to detach this last neutron from 131Cd and go back to the more stable 130Cd. The energetic shell distance of cadmium was found to be smaller than that of tin, which had already been known. This had been expected as tin also has a magic proton number (Z=50), whereas in the case of cadmium (Z=48) the proton shell is not yet filled up. The increased neutron-shell energy distance of tin is a result of the mutual strengthening of the N and Z shell effects – as recently found also for the element calcium at smaller magic proton and neutron numbers, again by the ISOLTRAP collaboration (see again the press release “Ion Pingpong confirms magic neutron number of exotic atomic nuclei” https://idw-online.de/en/news631425)

Financial support for this work came from the German Federal Ministry of Education and Research (BMBF, 05P12HGCI1, 05P12HGFNE, 05P15HGCIA, and 05P09ODCIA), the Nuclear Astrophysics Virtual Institute (NAVI) of the Helmholtz Association, the Helmholtz-CAS Joint Research Group (HCJRG-108), the Max-Planck Society, the European Union (7th framework through ENSAR, 262010), the French IN2P3, the Helmholtz Alliance Program (HA216/EMMI), the STFC (ST/L005743/1 and ST/L005816/1), the IMPRS-PTFS, the FRS-FNRS (Belgium), the Max-Planck/Princeton Center for Plasma Physics (MPPC), and the Robert-Bosch Foundation.

Publication
Precision Mass Measurements of 129–131Cd and Their Impact on Stellar Nucleosynthesis via the Rapid Neutron Capture Process, D. Atanasov, P. Ascher, K. Blaum, R.B. Cakirli, A. S. George, S. Goriely, F. Herfurth, H.-T. Janka,
O. Just, M. Kowalska, S. Kreim, D. Kisler, Yu. A. Litvinov, D. Lunney, V. Manea, D. Neidherr, M. Rosenbusch, L. Schweikhard, A. Welker, F. Wienholtz, R.N. Wolf, K. Zuber, Phys. Rev. Lett. 115, 232501 (2015)
DOI: 10.1103/PhysRevLett.115. 232501

Photo: Graduate students Dinko Atanasov (Max-Planck-Institut für Kernphysik, Heidelberg, on the right) and Frank Wienholtz (Uni Greifswald) on the highest platform of the three-story ISOLTRAP setup in the experimental hall of ISOLDE at CERN - Photo: Maxime Mougeot
The photograph can be downloaded and used free of charge in connection with this press release. The name of the photographer has to be mentioned. Download http://www.uni-greifswald.de/informieren/pressestelle/pressefotos/pressefotos-20...

Related press releases
https://idw-online.de/de/news631423 Mit Ionen-Pingpong magische Neutronenzahl exotischer Atomkerne bestätigt
https://idw-online.de/en/news631425 Ion Pingpong confirms magic neutron number of exotic atomic nuclei
https://idw-online.de/de/news539615 Mit Ionen-Pingpong Kräfte in Atomkernen sichtbar gemacht
https://idw-online.de/en/news539611 Ion ping pong reveals forces in atomic nuclei
https://idw-online.de/de/news516617 Präzisionsmassenmessung im Labor gewährt Blick in die Kruste von Neutronensternen
https://idw-online.de/en/news516628 Laboratory Mass Measurement deepens Insight into Neutron Star Crusts
https://idw-online.de/de/news634638 Über zwei Millionen Euro für Erforschung exotischer Atomkerne am CERN

Contacts
Dipl.-Phys. Frank Wienholtz and
Prof. Dr. Lutz Schweikhard (head of the Greifswald research group)
Institut für Physik der Universität Greifswald
Felix-Hausdorff-Straße 6, 17487 Greifswald
Telephone 49 (0)3834 86 4700
wienholtz@physik.uni-greifswald.de, lschweik@physik.uni-greifswald.de
http://ww6.physik.uni-greifswald.de/index.html

Dipl.-Phys. Dinko Atanasov and
Prof. Dr. Klaus Blaum (Spokesperson of the ISOLTRAP collaboration)
Max-Planck-Institute für Kernphysik
Saupfercheckweg 1, 69117 Heidelberg
Telephone +49 (0)6221 516850
dinko.atanasov@cern.ch, klaus.blaum@mpi-hd.mpg.de
http://www.mpi-hd.mpg.de/blaum/index.de.html

Jan Meßerschmidt | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>