Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the way to heavy elements – short-lived cadmium isotopes in the trap

15.12.2015

An international research team including scientists from Greifswald succeeded in performing the first determination of the mass of the atomic nuclei of the exotic cadmium isotopes 129Cd, 130Cd und 131Cd. These short-lived particles with half-lives of only fractions of seconds were delivered by the ion-separator ISOLDE at the European research center CERN http://home.cern/ and investigated by use of Penning traps https://en.wikipedia.org/wiki/Penning_trap and a multi-reflection time-of-flight mass spectrometer https://en.wikipedia.org/wiki/Time-of-flight_mass_spectrometry.

The results confirm the expected magic neutron number N=82 and are of significant relevance for simulation studies extending our understanding of the origin of the chemical elements in the region from tin to barium which are found with comparatively high abundances in our Solar System. The results of the measurements and accompanying calculations are reported by the international research journal Physical Review Letters http://journals.aps.org/prl/ in its latest issue (02. Dezember 2015).


Graduate students Dinko Atanasov and Frank Wienholtz on the highest platform of the three-story ISOLTRAP setup in the experimental hall of ISOLDE at CERN

Maxime Mougeot / The photograph can be downloaded and used free of charge in connection with this press release. The name of the photographer has to be mentioned.

We are made of stardust – only hydrogen and helium were around shortly after the big bang; all other elements were and are still produced in the stars. The nuclei of the lower mass elements up to about iron can grow in the center of stars. Above that element, things get more complicated as energy is no longer released in the build-up of heavier elements. On the contrary, energy is used up. Thus, only explosive, i.e., very energetic star processes, such as supernovae or the mergers of neutron stars with black holes, can supply the necessary energies. Under these conditions, further neutrons are attached to the atomic nuclei. In general, the resulting neutron-rich nuclei decay via the so-called beta decay, i.e. a reaction where the nuclei increase their atomic number by the emission of an electron: However, it is still unclear and a topic of intense research as to where and how exactly these processes take place. In this context, experimental data about the nuclei involved are of highest interest. However, these nuclei are often very short-lived and accompanied by large amounts of nuclei of similar masses – which poses big challenges for the experimentalists.

Recently, scientists of the ISOLTRAP collaboration http://isoltrap.web.cern.ch/isoltrap/ which includes researchers of CERNhttp://home.cern/ , of the Max-Planck-Instituts für Kernphysik in Heidelberg https://www.mpi-hd.mpg.de/mpi/start/ , of the Helmholtzzentrums für Schwerionenforschung in Darmstadt https://www.gsi.de/start/aktuelles.htm as well as from universities in Dresden https://tu-dresden.de/ , Greifswald http://www.uni-greifswald.de/ , Istanbul (Turkey) http://www.istanbul.edu.tr/ , Manchester (United Kongdom) http://www.manchester.ac.uk/ and Paris-Sud (France) http://www.u-psud.fr/ succeeded in con-tributing important experimental results for the simulation of possible nuclear-synthesis scenarios. This input data was then used by theoreticians of the Free University of Brussels http://www.vub.ac.be/en/ and the Max-Planck-Institute for Astrophysics at Garching http://www.mpa-garching.mpg.de/ for such simulations of the nuclear reactions.

Like with the electrons in the atomic shell, the protons and neutrons, i.e. the constituents of the atomic nucleus, are found in energetic shells. Whenever such a shell has just been filled up, the nucleus is particularly stable and the corresponding proton and neutron numbers are called magic numbers. An example of a magic neutron number is N=82. As cadmium nuclei are defined to have Z=48 protons, a special configuration of neutrons is found for this element at mass number A=Z+N=130. Due to their enhanced stability, nuclei with magic numbers are very often produced in the explosive stellar phases, which leads to a relatively high abundance, even during the continuous transmutation processes. Because of their enhanced presence, they are called waiting-point nuclei. After the stellar explosion, these waiting-point nuclei beta-decay into the region of the periodic table of elements mentioned above – with enhanced abundances at the mass numbers around A=130.

Up until the present studies, only the nuclear mass of 130Cd was known, and this only in-directly from nuclear reactions. The masses of the neighboring isotopes 129Cd and 131Cd had not been measured at all. Now, the ISOLTRAP collaboration succeeded in the first such measurements, made possible by a multi-refection time-of-flight mass spectrometer, a contribution from the University of Greifswald. It was operated in two different application modes, which had been introduced recently in other experiments (see the press releases “Laboratory Mass Measurement deepens Insight into Neutron Star“ https://idw-online.de/en/news516628 , “Ion ping pong reveals forces in atomic nuclei“ https://idw-online.de/en/news539611 and “Ion Pingpong confirms magic neutron number of exotic atomic nuclei“ https://idw-online.de/en/news631425 ).

The time-of-flight mass spectrometer was applied for the isotopes 129Cd and 130Cd, which not only live somewhat longer, but are also produced at rates of more than a thousand particles per second, to select the cadmium isotopes from the mixture of more abundant isobars produced at CERN, i.e. atomic nuclei with almost identical mass. Isobars have the same total number of nucleons A=Z+N, differ however, in the individual numbers of the Z protons and N neutrons. The multi-refection time-of-flight mass spectrometer of ISOLTRAP was able to fish the nuclei of interest, 129Cd and 130Cd, from the isobar mixture and thus prepare them for mass spectrometry in a Penning trap. The production rate of the isotope 131Cd, however, was an order of magnitude lower and therefore not sufficient for a Penning-trap experiment in the given measurement time. In this case, the mass measurement itself had to be performed by use of the multi-refection time-of-flight device. Although its relative mass uncertainty is “only” slightly better than one in a million, and thus not as accurate as the Penning trap, the measurement can be performed faster and with less particles.

This allowed the studies to go beyond the magic neutron number. This new achievement is of particular importance, as the energetic distance between the filled neutron shell and the following shell is only accessible with the 131Cd mass value, as 131Cd places a first neutron in this new shell. In other words, we now know the energy that is necessary to detach this last neutron from 131Cd and go back to the more stable 130Cd. The energetic shell distance of cadmium was found to be smaller than that of tin, which had already been known. This had been expected as tin also has a magic proton number (Z=50), whereas in the case of cadmium (Z=48) the proton shell is not yet filled up. The increased neutron-shell energy distance of tin is a result of the mutual strengthening of the N and Z shell effects – as recently found also for the element calcium at smaller magic proton and neutron numbers, again by the ISOLTRAP collaboration (see again the press release “Ion Pingpong confirms magic neutron number of exotic atomic nuclei” https://idw-online.de/en/news631425)

Financial support for this work came from the German Federal Ministry of Education and Research (BMBF, 05P12HGCI1, 05P12HGFNE, 05P15HGCIA, and 05P09ODCIA), the Nuclear Astrophysics Virtual Institute (NAVI) of the Helmholtz Association, the Helmholtz-CAS Joint Research Group (HCJRG-108), the Max-Planck Society, the European Union (7th framework through ENSAR, 262010), the French IN2P3, the Helmholtz Alliance Program (HA216/EMMI), the STFC (ST/L005743/1 and ST/L005816/1), the IMPRS-PTFS, the FRS-FNRS (Belgium), the Max-Planck/Princeton Center for Plasma Physics (MPPC), and the Robert-Bosch Foundation.

Publication
Precision Mass Measurements of 129–131Cd and Their Impact on Stellar Nucleosynthesis via the Rapid Neutron Capture Process, D. Atanasov, P. Ascher, K. Blaum, R.B. Cakirli, A. S. George, S. Goriely, F. Herfurth, H.-T. Janka,
O. Just, M. Kowalska, S. Kreim, D. Kisler, Yu. A. Litvinov, D. Lunney, V. Manea, D. Neidherr, M. Rosenbusch, L. Schweikhard, A. Welker, F. Wienholtz, R.N. Wolf, K. Zuber, Phys. Rev. Lett. 115, 232501 (2015)
DOI: 10.1103/PhysRevLett.115. 232501

Photo: Graduate students Dinko Atanasov (Max-Planck-Institut für Kernphysik, Heidelberg, on the right) and Frank Wienholtz (Uni Greifswald) on the highest platform of the three-story ISOLTRAP setup in the experimental hall of ISOLDE at CERN - Photo: Maxime Mougeot
The photograph can be downloaded and used free of charge in connection with this press release. The name of the photographer has to be mentioned. Download http://www.uni-greifswald.de/informieren/pressestelle/pressefotos/pressefotos-20...

Related press releases
https://idw-online.de/de/news631423 Mit Ionen-Pingpong magische Neutronenzahl exotischer Atomkerne bestätigt
https://idw-online.de/en/news631425 Ion Pingpong confirms magic neutron number of exotic atomic nuclei
https://idw-online.de/de/news539615 Mit Ionen-Pingpong Kräfte in Atomkernen sichtbar gemacht
https://idw-online.de/en/news539611 Ion ping pong reveals forces in atomic nuclei
https://idw-online.de/de/news516617 Präzisionsmassenmessung im Labor gewährt Blick in die Kruste von Neutronensternen
https://idw-online.de/en/news516628 Laboratory Mass Measurement deepens Insight into Neutron Star Crusts
https://idw-online.de/de/news634638 Über zwei Millionen Euro für Erforschung exotischer Atomkerne am CERN

Contacts
Dipl.-Phys. Frank Wienholtz and
Prof. Dr. Lutz Schweikhard (head of the Greifswald research group)
Institut für Physik der Universität Greifswald
Felix-Hausdorff-Straße 6, 17487 Greifswald
Telephone 49 (0)3834 86 4700
wienholtz@physik.uni-greifswald.de, lschweik@physik.uni-greifswald.de
http://ww6.physik.uni-greifswald.de/index.html

Dipl.-Phys. Dinko Atanasov and
Prof. Dr. Klaus Blaum (Spokesperson of the ISOLTRAP collaboration)
Max-Planck-Institute für Kernphysik
Saupfercheckweg 1, 69117 Heidelberg
Telephone +49 (0)6221 516850
dinko.atanasov@cern.ch, klaus.blaum@mpi-hd.mpg.de
http://www.mpi-hd.mpg.de/blaum/index.de.html

Jan Meßerschmidt | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>