Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NOAA's DSCOVR going to a 'far out' orbit

27.01.2015

Many satellites that monitor the Earth orbit relatively close to the planet, while some satellites that monitor the sun orbit our star. DSCOVR will keep an eye on both, with a focus on the sun. To cover both the Earth and sun, it will have an unusual orbit in a place called L1.

The Deep Space Climate Observatory, or DSCOVR, spacecraft will orbit between Earth and the sun, observing and providing advanced warning of extreme emissions of particles and magnetic fields from the sun known as Coronal Mass Ejections or CMEs which can affect power grids, communications systems, and satellites close to Earth.


This is a diagram of the 5 Lagrange Points associated with the sun-Earth system. In this image NASA's WMAP orbits around L2. Image is not to scale.

Credit: NASA / WMAP Science Team

DSCOVR will also observe our planet and provide measurements of the radiation reflected and emitted by Earth and multi-spectral images of the sunlit side of Earth for science applications.

DSCOVR's orbit will be at what is called the L1 point in space. L1 means the Lagrange point 1 which is approximately one million miles from Earth. Once launched, it will take approximately 110 days to arrive at its orbit.

At L1, the gravitational forces between the sun and Earth balance the centrifugal forces of a satellite to provide a quasi-stable orbit point requiring fewer orbital corrections (and therefore reducing fuel consumption) for the spacecraft to remain in its operational location for a longer period of time. Placing DSCOVR in orbit around the L1 point provides definite advantages, including the quality of the solar wind observations.

The L1 position will provide DSCOVR with a point of "early warning" when a surge of particles and magnetic field from the sun will hit Earth, if they have characteristics that will cause a geomagnetic storm for Earth. Unlike other satellite orbits that circle around Earth, spacecraft at L1 can always stay on the sunward side of our planet making it an ideal location for monitoring incoming solar wind. The amount of early warning ranges from approximately 45 to 30 minutes depending on the speed of the coronal ejected particles, but nonetheless, a sufficient amount of time for spacecraft and power grid operators to take appropriate actions to protect the systems from catastrophic failure.

The DSCOVR Earth science Instruments will be the very first looking at the Earth from the L1 point and will observe the whole sunlit Earth from sunrise to sunset (compared with a microscopic view from low orbits).

Other NASA satellites have used the L1 position for orbit, but this is the first time a NOAA satellite will orbit in L1. Previous NASA missions include: ISEE 3 launched in 1978, and ACE, Wind and SOHO currently in the L1 orbit.

The DSCOVR mission is a partnership between NOAA, NASA and the U.S. Air Force. NOAA will operate DSCOVR from its NOAA Satellite Operations Facility in Suitland, Maryland, process data at the SWPC for distribution to users within the United States and around the world. The data will be archived at NOAA's National Geophysical Data Center in Boulder, Colorado.

NASA received funding from NOAA to refurbish the DSCOVR spacecraft and its solar wind instruments, develop the ground segment and manage launch and activation of the satellite. The Air Force funds and oversees the launch services for DSCOVR. DSCOVR also hosts NASA-funded secondary sensors for Earth and space science observations. NASA provided funding for the refurbishment of the Earth-viewing instruments. The Earth science data will be processed at NASA's DSCOVR Science Operations Center and archived and distributed by NASA's Atmospheric Science Data Center.

###

For more information about Lagrange points, visit:

http://map.gsfc.nasa.gov/mission/observatory_l2.html

For more information about DSCOVR, visit:

http://www.nesdis.noaa.gov/DSCOVR/

Rob Gutro | EurekAlert!

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>