Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NOAA's DSCOVR going to a 'far out' orbit

27.01.2015

Many satellites that monitor the Earth orbit relatively close to the planet, while some satellites that monitor the sun orbit our star. DSCOVR will keep an eye on both, with a focus on the sun. To cover both the Earth and sun, it will have an unusual orbit in a place called L1.

The Deep Space Climate Observatory, or DSCOVR, spacecraft will orbit between Earth and the sun, observing and providing advanced warning of extreme emissions of particles and magnetic fields from the sun known as Coronal Mass Ejections or CMEs which can affect power grids, communications systems, and satellites close to Earth.


This is a diagram of the 5 Lagrange Points associated with the sun-Earth system. In this image NASA's WMAP orbits around L2. Image is not to scale.

Credit: NASA / WMAP Science Team

DSCOVR will also observe our planet and provide measurements of the radiation reflected and emitted by Earth and multi-spectral images of the sunlit side of Earth for science applications.

DSCOVR's orbit will be at what is called the L1 point in space. L1 means the Lagrange point 1 which is approximately one million miles from Earth. Once launched, it will take approximately 110 days to arrive at its orbit.

At L1, the gravitational forces between the sun and Earth balance the centrifugal forces of a satellite to provide a quasi-stable orbit point requiring fewer orbital corrections (and therefore reducing fuel consumption) for the spacecraft to remain in its operational location for a longer period of time. Placing DSCOVR in orbit around the L1 point provides definite advantages, including the quality of the solar wind observations.

The L1 position will provide DSCOVR with a point of "early warning" when a surge of particles and magnetic field from the sun will hit Earth, if they have characteristics that will cause a geomagnetic storm for Earth. Unlike other satellite orbits that circle around Earth, spacecraft at L1 can always stay on the sunward side of our planet making it an ideal location for monitoring incoming solar wind. The amount of early warning ranges from approximately 45 to 30 minutes depending on the speed of the coronal ejected particles, but nonetheless, a sufficient amount of time for spacecraft and power grid operators to take appropriate actions to protect the systems from catastrophic failure.

The DSCOVR Earth science Instruments will be the very first looking at the Earth from the L1 point and will observe the whole sunlit Earth from sunrise to sunset (compared with a microscopic view from low orbits).

Other NASA satellites have used the L1 position for orbit, but this is the first time a NOAA satellite will orbit in L1. Previous NASA missions include: ISEE 3 launched in 1978, and ACE, Wind and SOHO currently in the L1 orbit.

The DSCOVR mission is a partnership between NOAA, NASA and the U.S. Air Force. NOAA will operate DSCOVR from its NOAA Satellite Operations Facility in Suitland, Maryland, process data at the SWPC for distribution to users within the United States and around the world. The data will be archived at NOAA's National Geophysical Data Center in Boulder, Colorado.

NASA received funding from NOAA to refurbish the DSCOVR spacecraft and its solar wind instruments, develop the ground segment and manage launch and activation of the satellite. The Air Force funds and oversees the launch services for DSCOVR. DSCOVR also hosts NASA-funded secondary sensors for Earth and space science observations. NASA provided funding for the refurbishment of the Earth-viewing instruments. The Earth science data will be processed at NASA's DSCOVR Science Operations Center and archived and distributed by NASA's Atmospheric Science Data Center.

###

For more information about Lagrange points, visit:

http://map.gsfc.nasa.gov/mission/observatory_l2.html

For more information about DSCOVR, visit:

http://www.nesdis.noaa.gov/DSCOVR/

Rob Gutro | EurekAlert!

More articles from Physics and Astronomy:

nachricht Mars 2020 mission to use smart methods to seek signs of past life
17.08.2017 | Goldschmidt Conference

nachricht Gold shines through properties of nano biosensors
17.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>