Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NJIT's new solar telescope unveils the complex dynamics of sunspots' dark cores

30.04.2015

Groundbreaking images of the Sun captured by scientists at NJIT's Big Bear Solar Observatory (BBSO) give a first-ever detailed view of the interior structure of umbrae - the dark patches in the center of sunspots - revealing dynamic magnetic fields responsible for the plumes of plasma that emerge as bright dots interrupting their darkness.

Their research is being presented this week at the first Triennial Earth-Sun Summit meeting between the American Astronomical Society's Solar Physics Division and the American Geophysical Union's Space Physics and Aeronomy section in Indianapolis, Ind.


Groundbreaking images of the sun captured by scientists at NJIT's Big Bear Solar Observatory give a first-ever detailed view of the interior structure of umbrae -- the dark patches in the center of sunspots -- revealing dynamic magnetic fields responsible for the plumes of plasma that emerge as bright dots interrupting their darkness.

Credit: NJIT's Big Bear Solar Observatory

The high-resolution images, taken through the observatory's New Solar Telescope (NST), show the atmosphere above the umbrae to be finely structured, consisting of hot plasma intermixed with cool plasma jets as wide as 100 kilometers.

"We would describe these plasma flows as oscillating cool jets piercing the hot atmosphere. Until now, we didn't know they existed. While we have known for a long time that sunspots oscillate - moderate resolution telescopes show us dark shadows, or penumbral waves, moving across the umbra toward the edge of a sunspot - we can now begin to understand the underlying dynamics," said Vasyl Yurchyshyn, a research professor of physics at NJIT and the lead author of two recent journal articles based on the NST observations.

Called spikes, the oscillating jets result from the penetration of magnetic and plasma waves from the Sun's photosphere - the light-giving layer of its atmosphere - into the abutting chromosphere, which they reach by traveling outward along magnetic tubes that serve as energy conduits. "This process can be likened to a blowhole at a rocky beach, where relentless onshore waves jet sea water high into the air," Yurchyshyn said.

Sunspots are formed when strong magnetic fields rise up from the convection zone, a region beneath the photosphere that transfers energy from the interior of the Sun to its surface. At the surface, the magnetic fields concentrate into bundles, which prevent the hot rising plasma from reaching the surface. This energy deficit causes the magnetic bundles to cool down to temperatures about 1,000 degrees lower than their surroundings. They therefore appear darker against the hotter, brighter background.

"But the magnetic field is not a monolith and there are openings in the umbra from which plasma bursts out as lava does from a volcano's side vents. These plumes create the bright, nearly circular patches we call umbral dots," Yurchyshyn noted. "Sunspots that are very dark have strong magnetic fields and thus fewer openings."

Compact groups of fast-changing sunspots create tension in their magnetic systems, which at some point erupt to relieve the stress. It is those eruptions that cause intense "space weather" events in the Earth's magnetosphere affecting communications, power lines, and navigation systems.

"We had no sense of what happens inside an umbra until we were able to see it in the high-resolution images obtained with the world's largest solar telescope. These data revealed to us unprecedented details of small-scale dynamics that appear to be similar in nature to what we see in other parts of the Sun," Yurchyshyn said. "There is growing evidence that these dynamic events are responsible for the heating of coronal loops, seen in ultraviolet images as bright magnetic structures that jet out from the Sun's surface. This is a solar puzzle we have yet to solve."

Since it began operating in 2009, Big Bear's NST has given scientists a closer look at sunspot umbrae, among other solar regions. It has also allowed them to measure the shape of chromospheric spectral lines, enabling scientists to probe solar conditions.

"These measurements tell us about the speed, temperature, and pressure of the plasma elements we are observing, as well as the strength and the direction of the solar magnetic fields," said Yurchyshyn, who is also a distinguished scholar at the Korea Astronomy and Space Science Institute. "Thus we were able to find that spikes, or oscillating jets, are caused by chromospheric shocks, which are abrupt fluctuations in the magnetic field and plasma that constantly push plasma up along nearly the same magnetic channels."

The study on umbral spikes was published in the Astrophysical Journal in 2014.

In a second paper published in the Astrophysical Journal in 2015, he is presenting another set of NST observations, taking a closer look at the sunspot oscillations that occur every three minutes and are thought to produce bright umbral flashes - emissions of plasma heated by shock waves.

The NST takes snapshots of the Sun every 10 seconds, which are then strung together as a video to reveal fast-evolving small explosions, plasma flows and the movement of magnetic fields. "We were able to obtain photographs of these flashes of unique clarity that allowed us to follow their development inside the umbra," he said. Previously believed to be diffuse patches randomly distributed over the umbra, the researchers found their location is in fact not random. They mainly form along so-called sunspot umbral light bridges, which are very large openings in the sunspot magnetic fields that often split an umbra into two or more parts.

"Even more importantly, we found that umbral flash lanes tend to appear on the side of light bridges that face the center of the sunspot," he added. "This finding is significant because it indicates that sunspot oscillations may be driven by one energy source located under the umbra. There are simulations that appear to reproduce what we have observed, which is very encouraging. We, as a community, are finally in the position to be able to directly compare the observations and the state-of-the-art simulation results, which is the key to making further progress in our field."

###

For further information, contact Tracey Regan at NJIT at tregan@njit.edu or 201-388-0232 or Craig DeForest, AAS/SPD press officer, at deforest@boulder.swri.edu or 303-641-5769.

About NJIT

One of the nation's leading public technological universities, New Jersey Institute of Technology (NJIT) is a top-tier research university that prepares students to become leaders in the technology-dependent economy of the 21st century. NJIT's multidisciplinary curriculum and computing-intensive approach to education provide technological proficiency, business acumen and leadership skills. With an enrollment of more than 10,000 graduate and undergraduate students, NJIT offers small-campus intimacy with the resources of a major public research university. NJIT is a global leader in such fields as solar research, nanotechnology, resilient design, tissue engineering, and cyber-security, in addition to others.

Media Contact

Tracey Regan
201-388-0232

 @njit

http://www.njit.edu 

Tracey Regan | EurekAlert!

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>