Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NJIT's new solar telescope unveils the complex dynamics of sunspots' dark cores


Groundbreaking images of the Sun captured by scientists at NJIT's Big Bear Solar Observatory (BBSO) give a first-ever detailed view of the interior structure of umbrae - the dark patches in the center of sunspots - revealing dynamic magnetic fields responsible for the plumes of plasma that emerge as bright dots interrupting their darkness.

Their research is being presented this week at the first Triennial Earth-Sun Summit meeting between the American Astronomical Society's Solar Physics Division and the American Geophysical Union's Space Physics and Aeronomy section in Indianapolis, Ind.

Groundbreaking images of the sun captured by scientists at NJIT's Big Bear Solar Observatory give a first-ever detailed view of the interior structure of umbrae -- the dark patches in the center of sunspots -- revealing dynamic magnetic fields responsible for the plumes of plasma that emerge as bright dots interrupting their darkness.

Credit: NJIT's Big Bear Solar Observatory

The high-resolution images, taken through the observatory's New Solar Telescope (NST), show the atmosphere above the umbrae to be finely structured, consisting of hot plasma intermixed with cool plasma jets as wide as 100 kilometers.

"We would describe these plasma flows as oscillating cool jets piercing the hot atmosphere. Until now, we didn't know they existed. While we have known for a long time that sunspots oscillate - moderate resolution telescopes show us dark shadows, or penumbral waves, moving across the umbra toward the edge of a sunspot - we can now begin to understand the underlying dynamics," said Vasyl Yurchyshyn, a research professor of physics at NJIT and the lead author of two recent journal articles based on the NST observations.

Called spikes, the oscillating jets result from the penetration of magnetic and plasma waves from the Sun's photosphere - the light-giving layer of its atmosphere - into the abutting chromosphere, which they reach by traveling outward along magnetic tubes that serve as energy conduits. "This process can be likened to a blowhole at a rocky beach, where relentless onshore waves jet sea water high into the air," Yurchyshyn said.

Sunspots are formed when strong magnetic fields rise up from the convection zone, a region beneath the photosphere that transfers energy from the interior of the Sun to its surface. At the surface, the magnetic fields concentrate into bundles, which prevent the hot rising plasma from reaching the surface. This energy deficit causes the magnetic bundles to cool down to temperatures about 1,000 degrees lower than their surroundings. They therefore appear darker against the hotter, brighter background.

"But the magnetic field is not a monolith and there are openings in the umbra from which plasma bursts out as lava does from a volcano's side vents. These plumes create the bright, nearly circular patches we call umbral dots," Yurchyshyn noted. "Sunspots that are very dark have strong magnetic fields and thus fewer openings."

Compact groups of fast-changing sunspots create tension in their magnetic systems, which at some point erupt to relieve the stress. It is those eruptions that cause intense "space weather" events in the Earth's magnetosphere affecting communications, power lines, and navigation systems.

"We had no sense of what happens inside an umbra until we were able to see it in the high-resolution images obtained with the world's largest solar telescope. These data revealed to us unprecedented details of small-scale dynamics that appear to be similar in nature to what we see in other parts of the Sun," Yurchyshyn said. "There is growing evidence that these dynamic events are responsible for the heating of coronal loops, seen in ultraviolet images as bright magnetic structures that jet out from the Sun's surface. This is a solar puzzle we have yet to solve."

Since it began operating in 2009, Big Bear's NST has given scientists a closer look at sunspot umbrae, among other solar regions. It has also allowed them to measure the shape of chromospheric spectral lines, enabling scientists to probe solar conditions.

"These measurements tell us about the speed, temperature, and pressure of the plasma elements we are observing, as well as the strength and the direction of the solar magnetic fields," said Yurchyshyn, who is also a distinguished scholar at the Korea Astronomy and Space Science Institute. "Thus we were able to find that spikes, or oscillating jets, are caused by chromospheric shocks, which are abrupt fluctuations in the magnetic field and plasma that constantly push plasma up along nearly the same magnetic channels."

The study on umbral spikes was published in the Astrophysical Journal in 2014.

In a second paper published in the Astrophysical Journal in 2015, he is presenting another set of NST observations, taking a closer look at the sunspot oscillations that occur every three minutes and are thought to produce bright umbral flashes - emissions of plasma heated by shock waves.

The NST takes snapshots of the Sun every 10 seconds, which are then strung together as a video to reveal fast-evolving small explosions, plasma flows and the movement of magnetic fields. "We were able to obtain photographs of these flashes of unique clarity that allowed us to follow their development inside the umbra," he said. Previously believed to be diffuse patches randomly distributed over the umbra, the researchers found their location is in fact not random. They mainly form along so-called sunspot umbral light bridges, which are very large openings in the sunspot magnetic fields that often split an umbra into two or more parts.

"Even more importantly, we found that umbral flash lanes tend to appear on the side of light bridges that face the center of the sunspot," he added. "This finding is significant because it indicates that sunspot oscillations may be driven by one energy source located under the umbra. There are simulations that appear to reproduce what we have observed, which is very encouraging. We, as a community, are finally in the position to be able to directly compare the observations and the state-of-the-art simulation results, which is the key to making further progress in our field."


For further information, contact Tracey Regan at NJIT at or 201-388-0232 or Craig DeForest, AAS/SPD press officer, at or 303-641-5769.

About NJIT

One of the nation's leading public technological universities, New Jersey Institute of Technology (NJIT) is a top-tier research university that prepares students to become leaders in the technology-dependent economy of the 21st century. NJIT's multidisciplinary curriculum and computing-intensive approach to education provide technological proficiency, business acumen and leadership skills. With an enrollment of more than 10,000 graduate and undergraduate students, NJIT offers small-campus intimacy with the resources of a major public research university. NJIT is a global leader in such fields as solar research, nanotechnology, resilient design, tissue engineering, and cyber-security, in addition to others.

Media Contact

Tracey Regan


Tracey Regan | EurekAlert!

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>