Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST 'noise thermometry' yields accurate new measurements of boltzmann constant

30.06.2017

New results will contribute to international effort to redefine measurement unit for temperature

By measuring the random jiggling motion of electrons in a resistor, researchers at the National Institute of Standards and Technology (NIST) have contributed to accurate new measurements of the Boltzmann constant, a fundamental scientific value that relates the energy of a system to its temperature. NIST made one measurement in its Boulder, Colorado, laboratory and collaborated on another in China.


This quantum voltage noise source (QVNS) provides a fundamentally accurate voltage signal that can be compared to the voltage noise from electrons in a resistor. Measuring the voltage noise enabled researchers to determine the Boltzmann constant, which relates an energy of a system to its temperature.

Credit: Dan Schmidt/NIST

These results will contribute to a worldwide effort to redefine the kelvin, the international unit of temperature, and could lead to better thermometers for industry.

Accurate temperature measurement is critical to any manufacturing process that requires specific temperatures, such as steel production. It's also important for nuclear power reactors, which require precise thermometers that are not destroyed by radiation and do not need to be regularly replaced by human workers.

"We live with temperature every day," said Samuel Benz, group leader of the NIST research team involved with the new results. "The current measurements that define the kelvin are 100 times less accurate than measurements defining the units for mass and electricity." The kilogram is known to parts per billion, while the kelvin is only known to a part in a million.

In late 2018, representatives from nations around the world are expected to vote on whether to redefine the international system of units, known as the SI, at the General Conference on Weights and Measures in France. When implemented in 2019, the new SI would no longer rely upon physical objects or substances to define measurement units. Instead, the new SI would be based on constants of nature such as the Boltzmann constant, which depends fundamentally on quantum mechanics, the theory that describes matter and energy at the atomic scale.

To define the kelvin, scientists currently measure the triple point of water in a sealed glass cell. The triple point is the temperature at which water, ice and water vapor exist in equilibrium. This corresponds to 273.16 kelvins (0.01 degrees Celsius or 32.0 degrees Fahrenheit). The kelvin is defined as 1/273.16 of the measured temperature value.

This method has drawbacks. For example, chemical impurities in the water can slowly lower the cell's temperature over time. Researchers must also make corrections due to the presence of different isotopes of water (i.e., having the same number of protons but different numbers of neutrons). And measurements at temperatures higher or lower than the triple point of water are inherently less precise.

"By defining the kelvin in terms of the Boltzmann constant, you don't have to have these variations in uncertainty, and you can use quantum-mechanical effects," said Nathan Flowers-Jacobs, lead author of the paper on the new NIST measurement, accepted for publication in the journal Metrologia.

For the Boltzmann constant to be good enough to redefine the kelvin, there are two requirements established by the international group in charge of the issue, known as the Consultative Committee on Thermometry of the International Committee for Weights and Measures. There must be one experimental value with a relative uncertainty below 1 part per million--and at least one measurement from a second technique with a relative uncertainty below 3 parts per million.

So researchers have been pursuing a variety of methods for measuring the Boltzmann constant. The most accurate method remains measurements of the acoustical properties of a gas. A 1988 NIST result yielded a value known to better than 2 parts per million, and more recent measurements have achieved less than 1 part per million. Scientists around the world have devised a variety of other techniques, including ones that measure other properties of gases.

"It's important to do this measurement with multiple methods that are completely different," said Benz. "It's also important that for each method you do multiple measurements."

A completely different approach is a technique that does not rely on ordinary gases but instead mainly on electrical measurements. The technique measures the degree of random motion--"noise"--of electrons in a resistor. This "Johnson noise" is directly proportional to the temperature of electrons in the resistor--and the Boltzmann constant. Past measurements of Johnson noise were plagued by the problem of measuring tiny voltages with parts-per-million accuracy; this problem is exacerbated by the Johnson noise of the measurement equipment itself.

To address this issue, the NIST researchers in 1999 developed a "quantum voltage noise source" (QVNS) as a voltage reference for Johnson Noise Thermometry (JNT). The QVNS uses a superconducting device known as a Josephson junction to provide a voltage signal that is fundamentally accurate, as its properties are based on the principles of quantum mechanics. The researchers compare the QVNS signal to the voltage noise created by the random motions of electrons in the resistor. In this way, the researchers can accurately measure Johnson noise--and the Boltzmann constant.

In 2011, the group began publishing Boltzmann constant measurements with this technique and has made improvements since then. Compared to the 2011 measurements, the new NIST results are 2.5 times more accurate, with a relative uncertainty of approximately 5 parts per million.

According to Flowers-Jacobs, the improvement came from better shielding of the experimental area from stray electrical noise and upgrades to the electronics. The researchers performed careful "cross-correlation" analysis in which they made two sets of measurements each of the Johnson noise and the quantum voltage noise source to reject other noise sources from the measurement. Other factors included increasing the size of the resistor for a larger source of Johnson noise and better shielding between the different measurement channels for the two sets of measurements.

NIST also contributed expertise as well as a quantum voltage noise source to a new Boltzmann measurement at the National Institute of Metrology in China. Thanks in part to excellent isolation from noise sources, this measurement has a relative uncertainty of 2.8 parts per million, satisfying the second requirement for a redefined kelvin. This new result has also been accepted for publication in Metrologia.

"It's been a very collaborative, international effort," Benz said. Germany has also begun an effort to develop Johnson noise thermometry for disseminating a primary standard for thermometry.

"All the data will be included" in determining a new Boltzmann constant value, said Horst Rogalla, leader of the NIST Johnson Noise Thermometry Project. "The important point is the condition for redefining the kelvin has been fulfilled."

Beyond the new SI, devices based on Johnson thermometry have potential for being used directly in industry, including in nuclear reactors. "At the moment, we are using it to define the kelvin, but afterwards, we will use it as an excellent thermometer," Rogalla said.

###

Papers:

N.E. Flowers-Jacobs, A. Pollarolo, K.J. Coakley, A.E. Fox, H. Rogalla, W. Tew and S. Benz, A Boltzmann constant determination based on Johnson noise thermometry. Metrologia. Accepted manuscript posted online 23 June 2017. Link: http://iopscience.iop.org/article/10.1088/1681-7575/aa7b3f (link is external)

J. Qu, S. Benz, K. Coakley, H. Rogalla, W. Tew, D. White, K. Zhou and Z. Zhou, An improved electronic determination of the Boltzmann constant by Johnson noise thermometry. Metrologia. Accepted manuscript posted online 8 June 2017. Link: http://iopscience.iop.org.nist.idm.oclc.org/article/10.1088/1681-7575/aa781e (link is external)

Media Contact

Ben Stein
bstein@nist.gov
301-975-2763

 @usnistgov

http://www.nist.gov 

Ben Stein | EurekAlert!

More articles from Physics and Astronomy:

nachricht NUS engineers develop novel method for resolving spin texture of topological surface states using transport measurements
26.04.2018 | National University of Singapore

nachricht European particle-accelerator community publishes the first industry compendium
26.04.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>