Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New NIST Nano-Ruler Sets Some Very Small Marks

24.09.2009
The National Institute of Standards and Technology (NIST) has issued a new ruler, and even for an organization that routinely deals in superlatives, it sets some records.

Designed to be the most accurate commercially available “meter stick” for the nano world, the new measuring tool—a calibration standard for X-ray diffraction—boasts uncertainties below a femtometer. That’s 0.000 000 000 000 001 meter, or roughly the size of a neutron.

The new ruler is in the form of a thin, multilayer silicon chip 25 millimeters square (just under an inch). Each one is individually measured and certified by NIST for the spacing and angles of the crystal planes of silicon atoms in the base crystal.

X-ray diffraction works by sending X-rays through a crystal—which could be anything from a wafer used to make microchips to a crystallized sample of an unknown protein—and observing the patterns made by the X-rays as they diffract from electrons in the crystal. The spacing, angles and intensity of the pattern’s lines tell a trained crystallographer the relative positions of the atoms in the crystal, as well as something about the quality of the crystal, the nature of the chemical bonds and more. It is one of the workhorse techniques of materials science and engineering. The precision version, high-resolution X-ray diffraction, can be used to determine the thickness, crystal structure, embedded strain and orientation of thin films used in advanced semiconductor devices and nanotechnologies.

Formally NIST Standard Reference Material (SRM) 2000, “Calibration Standard for High-Resolution X-Ray Diffraction,” the new ruler gives crystallographers an extremely well-known crystal sample for calibrating their precision instruments. It was made possible by the development of a unique parallel beam diffractometer at NIST that makes measurements traceable to international measurement standards and is believed to be the most accurate angle measuring device of its kind in the world. The NIST instrument can measure angles with an accuracy better than an arc second, 1/3600 of a degree. “Our accuracy is at about the angle made by the diameter of a quarter—if you’re looking at it from two miles away,” explains NIST materials scientist Donald Windover, “The precision is better, about the size of Washington’s nose.”

Because the crystal lattice values for SRM 2000—spacing, tilt, orientation—are traceable to SI units, the new material provides an absolute reference for high-precision calibrations. Details are available at https://www-s.nist.gov/srmors/view_detail.cfm?srm=2000.

Standard Reference Materials are among the most widely distributed and used products from NIST. The agency prepares, analyzes and distributes more than a thousand different materials that are used throughout the world to check the accuracy of instruments and test procedures used in manufacturing, clinical chemistry, environmental monitoring, electronics, criminal forensics and dozens of other fields. For more information, see NIST’s SRM Web page at http://ts.nist.gov/measurementservices/referencematerials

Michael Baum | Newswise Science News
Further information:
http://www.nist.gov
http://ts.nist.gov/measurementservices/referencematerials

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>