Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New NIST Nano-Ruler Sets Some Very Small Marks

24.09.2009
The National Institute of Standards and Technology (NIST) has issued a new ruler, and even for an organization that routinely deals in superlatives, it sets some records.

Designed to be the most accurate commercially available “meter stick” for the nano world, the new measuring tool—a calibration standard for X-ray diffraction—boasts uncertainties below a femtometer. That’s 0.000 000 000 000 001 meter, or roughly the size of a neutron.

The new ruler is in the form of a thin, multilayer silicon chip 25 millimeters square (just under an inch). Each one is individually measured and certified by NIST for the spacing and angles of the crystal planes of silicon atoms in the base crystal.

X-ray diffraction works by sending X-rays through a crystal—which could be anything from a wafer used to make microchips to a crystallized sample of an unknown protein—and observing the patterns made by the X-rays as they diffract from electrons in the crystal. The spacing, angles and intensity of the pattern’s lines tell a trained crystallographer the relative positions of the atoms in the crystal, as well as something about the quality of the crystal, the nature of the chemical bonds and more. It is one of the workhorse techniques of materials science and engineering. The precision version, high-resolution X-ray diffraction, can be used to determine the thickness, crystal structure, embedded strain and orientation of thin films used in advanced semiconductor devices and nanotechnologies.

Formally NIST Standard Reference Material (SRM) 2000, “Calibration Standard for High-Resolution X-Ray Diffraction,” the new ruler gives crystallographers an extremely well-known crystal sample for calibrating their precision instruments. It was made possible by the development of a unique parallel beam diffractometer at NIST that makes measurements traceable to international measurement standards and is believed to be the most accurate angle measuring device of its kind in the world. The NIST instrument can measure angles with an accuracy better than an arc second, 1/3600 of a degree. “Our accuracy is at about the angle made by the diameter of a quarter—if you’re looking at it from two miles away,” explains NIST materials scientist Donald Windover, “The precision is better, about the size of Washington’s nose.”

Because the crystal lattice values for SRM 2000—spacing, tilt, orientation—are traceable to SI units, the new material provides an absolute reference for high-precision calibrations. Details are available at https://www-s.nist.gov/srmors/view_detail.cfm?srm=2000.

Standard Reference Materials are among the most widely distributed and used products from NIST. The agency prepares, analyzes and distributes more than a thousand different materials that are used throughout the world to check the accuracy of instruments and test procedures used in manufacturing, clinical chemistry, environmental monitoring, electronics, criminal forensics and dozens of other fields. For more information, see NIST’s SRM Web page at http://ts.nist.gov/measurementservices/referencematerials

Michael Baum | Newswise Science News
Further information:
http://www.nist.gov
http://ts.nist.gov/measurementservices/referencematerials

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>