Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool could track space weather 24 hours before reaching Earth

10.06.2015

Our sun is a volatile star: explosions of light, energy and solar materials regularly dot its surface. Sometimes an eruption is so large it hurls magnetized material into space, sending out clouds that can pass by Earth's own magnetic fields, where the interactions can affect electronics on satellites, GPS communications or even utility grids on the ground.

The clouds can be large or small. They can be relatively slow or as fast as 3,000 miles per second, but only one component has a strong effect on how much a CME will arrange the magnetic fields in near-Earth space. If they are aligned in the same direction as Earth's -- that is, pointing from south to north -- the CME will slide by without much effect.


This image of the sun from Jan. 7, 2014, combines a picture of the sun captured by NASA's Solar Dynamics Observatory, or SDO, with a model of the magnetic field lines using data that is also from SDO. A new model based on such data may one day help space weather forecasters better predict how eruptions from the sun will behave at Earth.

Credits: NASA/SDO/LMSAL

If aligned in the opposite direction, however, Earth's magnetic fields can be completely rearranged. Indeed, it has happened that giant, fast moving CMEs have had little effect at Earth, while small ones have caused huge space weather storms, dependent on that one factor of where the magnetic fields point.

But right now we don't have much advance notice of how a CME's magnetic fields are arranged. We can only measure the fields as the CME passes over satellites close to Earth.

"What we have now is effectively only a 30 to 60 minute heads up of a CME's configuration before it hits Earth's magnetosphere," said Neel Savani, a space scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "We don't have a real time method for measuring or modeling this magnetic field more than an hour before a space weather impact."

Savani described a new model to measure the magnetic field configuration significantly further ahead of time in a paper appearing in Space Weather on June 9, 2015. The model is now undergoing testing, but if it's robust, then scientists might finally have a tool to predict a CME's magnetic configuration from afar. And that means forecasters could give utility grid and satellite operators a full 24-hour advance warning to protect their systems -- crucial time to protect their assets.

While we have no tools that can observe the magnetic configuration of a CME directly as it is traveling toward us, Savani made use of NASA's Solar Dynamics Observatory to observe the magnetic fields of the initial eruption on the sun.

In the past, using such data to predict which direction the CME's magnetic fields point has not been very successful. However, Savani realized that earlier attempts simplified the eruptions too much, assuming they came from a single active region -- the magnetically complex spots on the sun that often give rise to solar eruptions. Savani's new method is able to incorporate the complex reality of CMEs having foot points in more than one active region.

"Once you can successfully measure the initial structure of the CME, the next step is to have a good understanding of how it evolves as it travels," said Savani.

We have no tools to measure the magnetic fields once a CME has moved away from the sun, but scientists do have ways of watching how the clouds expand, twist and grow as they race into space. Both NASA's Solar Terrestrial Relations Observatory, or STEREO, and the joint ESA/NASA Solar and Heliospheric Observatory, or SOHO, provide these observations using coronagraphs, which can focus in on the CME's progress by blocking the bright light of the sun.

By watching how the CME moves and changes in these coronagraphs, Savani's model tracks how the initial eruption evolves over time. Ultimately, the model can describe how the CME will be configured as it approaches Earth, and even which parts of the CME will have magnetic fields pointed in which direction.

So far Savani has tested his modeling method on eight different CMEs to show that his model's predictions corresponded with what actually happened. He will test even more examples to make sure the model is truly robust. If perfected, such models can be used by the Space Weather Prediction Center at the US National Oceanic and Atmospheric Association to provide alerts and forecasts to industries that require space weather forecasts, such as the military, the airlines and utility companies. But it's NASA's responsibility - as the research arm of the nation's space weather effort - to make sure a model is reliable enough for regular operational use. So Savani is working with the Community Coordinated Modeling Center at NASA Goddard to test his model.

"We'll test the model against a variety of historical events," said Antti Pulkkinen, director of the Space Weather Research Center at NASA Goddard. "We'll also see how well it works on any events we witness over the next year. In the end we'll be able to provide concrete information about how reliable a prediction tool it is."

Savani will also work to improve the user interface of his model. The goal is to create an easy-to-use application with standardized input and reliable output. Time will tell if Savani's model can help with characterization of CMEs, but if it works, scientists will have an advanced new tool to protect our home planet from the effects of space weather.

###

For more information about the Solar Dynamics Observatory, visit: http://www.nasa.gov/sdo

Susan Hendrix | EurekAlert!

Further reports about: CMEs Earth Goddard Space Flight Center NASA Observatory Space Weather magnetic fields

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>