Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New thruster design increases efficiency for future spaceflight

16.08.2017

Inlet nozzles create vortex to power plasma ejection

Hall thrusters (HTs) are used in earth-orbiting satellites, and also show promise to propel robotic spacecraft long distances, such as from Earth to Mars. The propellant in a HT, usually xenon, is accelerated by an electric field which strips electrons from neutral xenon atoms, creating a plasma. Plasma ejected from the exhaust end of the thruster can deliver great speeds, typically around 70,000 mph.


This is the vortex exhaust mode on low-power cylindrical Hall thruster.

Credit: Wei Liqiu, Harbin Institute of Technology, China

Cylindrical shaped Hall thrusters (CHTs) lend themselves to miniaturization and have a smaller surface-to-volume ratio that prevents erosion of the thruster channel. Investigators at the Harbin Institute of Technology in China have developed a new inlet design for CHTs that significantly increases thrust. Simulations and experimental tests of the new design are reported this week in the journal Physics of Plasmas, by AIP Publishing.

CHTs are designed for low-power operations. However, low propellant flow density can cause inadequate ionization, a key step in the creation of the plasma and the generation of thrust. In general, increasing the gas density in the discharge channel while lowering its axial velocity, i.e., the speed perpendicular to the thrust direction, will improve the thruster's performance.

"The most practical way to alter the neutral flow dynamics in the discharge channel is by changing the gas injection method or the geometric morphology of the discharge channel," said Liqiu Wei, one of the lead authors of the paper.

The investigators tested a simple design change. The propellant is injected into the cylindrical chamber of the thruster by a number of nozzles that usually point straight in, toward the center of the cylinder. When the angle of the inlet nozzles is changed slightly, the propellant is sent into a rapid circular motion, creating a vortex in the channel.

Wei and his coworkers simulated the motion of the plasma in the channel for both nozzle angles using modeling and analysis software (COMSOL) that uses a finite element approach to modeling molecular flow. The results showed that the gas density near the periphery of the channel is higher when the nozzles are tilted and the thruster is run in vortex mode. In this mode, gas density is significantly higher and more uniform, which also helps improve thruster performance.

The investigators verified their simulation's predictions experimentally, and the vortex inlet mode successfully produced higher thrust values, especially when a low discharge voltage was used. In particular, the specific impulse of the thruster increased by 1.1 to 53.5 percent when the discharge voltage was in the range of 100 to 200 Volts.

"The work we report here only verified the practicability of this gas inlet design. We still need to study the effect of nozzle angle, diameter, the ratio of depth to diameter and the length of the discharge channel," Wei said. He went on to predict that the vortex design will be tested in flight-type HTs soon and may eventually be used in spaceflight.

###

The article, "Effect of vortex inlet mode on low-power cylindrical Hall thruster," is authored by Yongjie Ding, Boyang Jia, Yu Xu, Liqiu Wei, Hongbo Su, Peng Li, Hezhi Sun, Wuji Peng, Yong Cao and Daren Yu. The article will appear in the journal Physics of Plasmas August 15, 2017 [DOI: 10.1063/1.4986007]. After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4986007.

ABOUT THE JOURNAL

Physics of Plasmas is devoted to the publication of original experimental and theoretical work in plasma physics, from basic plasma phenomena to astrophysical and dusty plasmas. See http://pop.aip.org.

Media Contact

Julia Majors
media@aip.org
301-209-3090

 @AIPPhysicsNews

http://www.aip.org 

Julia Majors | EurekAlert!

Further reports about: Plasmas diameter injection method nozzles plasma physics propellant spaceflight xenon

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>