Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New theory on the origin of dark matter

08.08.2017

Theoretical physicists at Mainz University present an alternative to the WIMP paradigm

Only a small part of the universe consists of visible matter. By far the largest part is invisible and consists of dark matter and dark energy. Very little is known about dark energy, but there are many theories and experiments on the existence of dark matter designed to find these as yet unknown particles.


In the new dark matter model, the Higgs particle has different properties to those in the standard model of particle physics. The figure shows the energy of the Higgs particle as a function of the model parameters.

Ill./©: Michael Baker, JGU

Scientists at Johannes Gutenberg University Mainz (JGU) in Germany have now come up with a new theory on how dark matter may have been formed shortly after the origin of the universe. This new model proposes an alternative to the WIMP paradigm that is the subject of various experiments in current research.

Dark matter is present throughout the universe, forming galaxies and the largest known structures in the cosmos. It makes up around 23 percent of our universe, whereas the particles visible to us that make up the stars, planets, and even life on Earth represent only about four percent of it. The current assumption is that dark matter is a cosmological relic that has essentially remained stable since its creation.

"We have called this assumption into question, showing that at the beginning of the universe dark matter may have been unstable," explained Dr. Michael Baker from the Theoretical High Energy Physics (THEP) group at the JGU Institute of Physics. This instability also indicates the existence of a new mechanism that explains the observed quantity of dark matter in the cosmos.

The stability of dark matter is usually explained by a symmetry principle. However, in their paper, Dr. Michael Baker and Prof. Joachim Kopp demonstrate that the universe may have gone through a phase during which this symmetry was broken.

This would mean that it is possible for the hypothetical dark matter particle to decay. During the electroweak phase transition, the symmetry that stabilizes dark matter would have been re-established, enabling it to continue to exist in the universe to the present day.

With their new theory, Baker and Kopp have introduced a new principle into the debate about the nature of dark matter that offers an alternative to the widely accepted WIMP theory. Up to now, WIMPs, or weakly interacting massive particles, have been regarded as the most likely components of dark matter, and experiments involving heavily shielded underground detectors have been carried out to look for them. "The absence of any convincing signals caused us to start looking for alternatives to the WIMP paradigm," said Kopp.

The two physicists claim that the new mechanism they propose may be connected with the apparent imbalance between matter and antimatter in the cosmos and could leave an imprint which would be detected in future experiments on gravitational waves. In their paper published in the scientific journal Physical Review Letters, Baker and Kopp also indicate the prospects of finding proof of their new principle at CERN's LHC particle accelerator and other experimental facilities.

Photo/Illustration:
http://www.uni-mainz.de/bilder_presse/08_physik_thep_dunkle_materie_zerfall_01.j...
Calculations for the new dark matter model developed at Mainz University
photo/©: Michael Baker, JGU

http://www.uni-mainz.de/bilder_presse/08_physik_thep_dunkle_materie_zerfall_02.j...
In the new dark matter model, the Higgs particle has different properties to those in the standard model of particle physics. The figure shows the energy of the Higgs particle as a function of the model parameters.
Ill./©: Michael Baker, JGU

Publication:
Michael J. Baker, Joachim Kopp
Dark Matter Decay between Phase Transitions at the Weak Scale
Physical Review Letters, 7 August 2017
DOI: 10.1103/PhysRevLett.119.061801
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.061801

Further information:
Dr. Michael Baker
Theoretical High Energy Physics (THEP)
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-24214
fax +49 6131 39-24611
e-mail: micbaker@uni-mainz.de
http://www.thep.physik.uni-mainz.de/47.php#L_Baker__Dr__Michael

Weitere Informationen:

http://www.thep.physik.uni-mainz.de/ - Theoretical High Energy Physics (THEP) group at Mainz University

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>