Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Reveals Stars in Milky Way Have Moved

03.08.2015

New Mexico State University researchers are part of a team of scientists with the Sloan Digital Sky Survey (SDSS) who created a new map of the Milky Way that shows nearly a third of the stars have dramatically changed their obits.

This discovery, published July 29 in “The Astrophysical Journal,” brings a new understanding of how stars are formed, and how they travel throughout our galaxy.


Illustration by Dana Berry/SkyWorks Digital, Inc.; SDSS collaboration

A single frame from an animation shows how stellar orbits in the Milky Way can change. It shows two pairs of stars (marked as red and blue) in which each pair started in the same orbit, and then one star in the pair changed orbits. The star marked as red has completed its move into a new orbit, while the star marked in blue is still moving.

In our modern world, many people move far away from their birthplaces, sometimes halfway around the world,” said Michael Hayden, NMSU astronomy graduate student and lead author of the new study. “Now we're finding the same is true of stars in our galaxy -- about 30 percent of the stars in our galaxy have traveled a long way from where they were born.”

To build a new map of the Milky Way, scientists used the SDSS Apache Point Observatory Galactic Evolution Explorer (APOGEE) spectrograph to observe 100,000 stars during a 4-year period.

For the last six years, NMSU astronomers in the College of Arts and Sciences, along with collaborators from member institutions around the world, have been using the 2.5-meter SDSS telescope at the Apache Point, located in the Sacramento Mountains about 20 miles south of Cloudcroft complete a suite of experiments that includes studies of Milky Way stars to unlock the history of our galaxy.

The key to creating and interpreting this map of the galaxy is measuring the elements in the atmosphere of each star. “From the chemical composition of a star, we can learn its ancestry and life history,” said Hayden, who is completing his Ph.D. at NMSU this summer.

The chemical information comes from spectra, which are detailed measurements of how much light the star gives off at different wavelengths. Spectra show prominent lines that correspond to elements and compounds. Astronomers can tell what a star is made of by reading these spectral lines.


“Stellar spectra show us that the chemical makeup of our galaxy is constantly changing,” said Jon Holtzman, NMSU astronomy professor who was involved in the study. “Stars create heavier elements in their cores, and when the stars die, those heavier elements go back into the gas from which the next stars form.”

As a result of this process of “chemical enrichment,” each generation of stars has a higher percentage of heavier elements than the previous generation did. In some regions of the galaxy, star formation has proceeded more vigorously than in other regions -- and in these more vigorous regions, more generations of new stars have formed. This means the average amount of heavier elements in stars varies among different parts of the galaxy. Astronomers then can determine what part of the galaxy a star was born in by tracing the amount of heavy elements in that star.

Hayden and his colleagues used APOGEE data to map the relative amounts of 15 separate elements, including carbon, silicon, and iron for stars all over the galaxy. What they found surprised them -- up to 30 percent of stars had compositions indicating that they were formed in parts of the galaxy far from their current positions.

When the team looked at the pattern of element abundances in detail, they found that much of the data could be explained by a model in which stars migrate radially, moving closer or farther from the galactic center with time. These random in-and-out motions are referred to as "migration," and are likely caused by irregularities in the galactic disk, such as the Milky Way's famous spiral arms. Evidence of stellar migration had previously been seen in stars near the Sun, but the new study is the first clear evidence that migration occurs throughout the galaxy.

Future studies by astronomers using data from SDSS promise even more new discoveries.

“These latest results take advantage of only a small fraction of the available APOGEE data,” said Steven Majewski, the Principal Investigator of APOGEE. “Once we unlock the full information content of APOGEE, we will understand the chemistry and shape of our galaxy much more clearly.”

NMSU has already begun Phase IV of SDSS, the next six-year mission, which runs through 2020. It will include data from the Sloan telescope at Apache Point Observatory and an additional telescope in Chile, adding to the database with a better view of the southern sky.

Contact Information
Minerva Baumann
Media Relations Director
mbauma46@nmsu.edu
Phone: 575-646-7566

Minerva Baumann | newswise
Further information:
http://www.nmsu.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>