Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research lights the way to super-fast computers

10.11.2014

New research published today in the journal Nature Communications, has demonstrated how glass can be manipulated to create a material that will allow computers to transfer information using light. This development could significantly increase computer processing speeds and power in the future

The research by the University of Surrey, in collaboration with the University of Cambridge and the University of Southampton, has found it is possible to change the electronic properties of amorphous chalcogenides, a glass material integral to data technologies such as CDs and DVDs.

By using a technique called ion doping, the team of researchers have discovered a material that could use light to bring together different computing functions into one component, leading to all-optical systems.

Computers currently use electrons to transfer information and process applications. On the other hand, data sources such as the internet rely on optical systems; the transfer of information using light. Optical fibres are used to send information around the world at the speed of light, but these signals then have to be converted to electrical signals once they reach a computer, causing a significant slowdown in processing.

"The challenge is to find a single material that can effectively use and control light to carry information around a computer. Much like how the web uses light to deliver information, we want to use light to both deliver and process computer data," said project leader, Dr Richard Curry of the University of Surrey.

"This has eluded researchers for decades, but now we have now shown how a widely used glass can be manipulated to conduct negative electrons, as well as positive charges, creating what are known as 'pn-junction' devices.

This should enable the material to act as a light source, a light guide and a light detector - something that can carry and interpret optical information. In doing so, this could transform the computers of tomorrow, allowing them to effectively process information at much faster speeds."

The researchers expect that the results of this research will be integrated into computers within ten years. In the short term, the glass is already being developed and used in next-generation computer memory technology known as CRAM, which may ultimately be integrated with the advances reported.

Amy Sutton | EurekAlert!
Further information:
http://www.surrey.ac.uk

More articles from Physics and Astronomy:

nachricht A single photon reveals quantum entanglement of 16 million atoms
16.10.2017 | Université de Genève

nachricht On the generation of solar spicules and Alfvenic waves
16.10.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>