Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model deepens understanding of the dynamics of quark-gluon plasmas

02.06.2017

Study offers new theoretical approaches to explain and predict high-energy nuclear collisions experiments

Quark-gluon plasmas are among the subjects that have been most extensively researched by physicists in recent times. Thanks to the largest particle accelerators in operation today - the Large Hadron Collider (LHC) in Europe and the Relativistic Heavy Ion Collider (RHIC) in the United States - it is now possible to reproduce a quark-gluon plasma in the laboratory. This state of matter is believed to have predominated in the universe for a fraction of a second after the Big Bang.


Diagram shows variations in energy density inside a quark-gluon plasma. Different colors refer to different levels of energy density, in accordance with the scale shown in the right-hand column.

Credit: Researcher's archive

According to the standard cosmological model, the duration of the quark-gluon plasma in the primordial universe was no more than one millionth of a second, since the universe is thought to have cooled approximately 10-6 s after the Big Bang to the extent that quarks and gluons could no longer move freely and instead became confined in hadrons (protons, neutrons, mesons, etc.). In the high-energy nuclear collisions produced at the LHC and RHIC, the quark-gluon plasmas last for an even shorter time - approximately 10-23 s - because of steep pressure gradients. Despite their transience and tiny volume (the diameter of a proton is on the order of 10-15 m), quark-gluon plasmas conceal intense and complex inner activity.

This activity is gradually being unveiled in LHC and RHIC experiments, and new theoretical approaches have been developed to explain or predict their results. A case in point, among many others, is the study "Hydrodynamic predictions for mixed harmonic correlations in 200 GeV Au+Au collisions", published in Physical Review C and highlighted as an Editors' Suggestion.

The study was performed by Fernando Gardim, from the Science & Technology Institute at the Federal University of Alfenas, Minas Gerais State (Southeast Brazil); Frédérique Grassi and Matthew Luzum, from the Physics Institute at the University of São Paulo (USP); and Jacquelyn Noronha-Hostler, from the Department of Physics at the University of Houston.

"Because of its very short duration, a quark-gluon plasma can't be observed directly," Grassi told. "The experiments are able to detect the hadrons formed when quarks and gluons recombine. These hadrons propagate in several directions. Their angular distribution around the axis of collision supplies highly relevant information about the plasma's structure and dynamics and, consequently, about the nature of the fundamental interactions in matter. Our study, which was theoretical, set out to predict specific patterns in the hadrons' angular distribution."

The researchers used a hydrodynamic model called NeXSPheRIO, which accurately reproduced a broad range of data obtained experimentally at RHIC. The computer simulations performed on this basis enabled the researchers to make predictions that can be tested in new experiments so that the model can be validated or corrected.

"The angular distribution observed in the experiments is decomposed into a sequence known in mathematics as a Fourier series," Grassi explained. "Each term in the series corresponds to a specific feature of the distribution, and the series as a whole tells us how many particles move according to each pattern. The phrase 'mixed harmonic correlations' used in the title is the technical term that names the correlations among different Fourier coefficients.

"If a quark-gluon plasma were strictly homogeneous and had the properties of a gas [if its particles interacted very little], then the resulting flow of hadrons would be isotropic [equal in all directions]. But that's not the case. Actual flows detected experimentally are anisotropic, and the angular distribution exhibits non-null Fourier coefficients, which tells us that the plasma is not homogeneous and that its particles interact strongly."

The distribution coefficients are classified according to their geometric characteristics as elliptic, triangular, quadrangular, pentagonal, etc. The predominant flow is elliptic, because the hadron jet is much stronger in one of the directions orthogonal to the axis of collision. This distribution, which results from the strong interaction between quarks and gluons, indicates that the plasma is not a gas but a liquid. However, it is not just any liquid: the fact that the elliptic flow is not attenuated shows that the viscosity of this liquid is extremely low. In fact, a quark-gluon plasma is the least viscous - or most perfect - liquid ever discovered.

"Previous research had already shown that a quark-gluon plasma is a quasi-perfect liquid. What our study added was a better understanding of the non-homogeneity of the energy distribution inside the plasma," Grassi explained. With its very short duration and minute dimensions, a quark-gluon plasma is highly dynamic. Fluctuations cause its energy density to vary from one region to another. The study offers deeper insight into the link between these dynamics and fluctuations.

"Because NeXSPheRIO has so far agreed well with all observations made to date at RHIC, we believe its predictions can be used as a basis of comparison for new measurements to be made at the US collider," Grassi said. "Any deviation from the predictions will supply valuable non-trivial information, either about the initial phase of the collision that gives rise to the plasma or about the intrinsic properties of the medium."

Media Contact

Samuel Antenor
samuel@fapesp.br
55-113-838-4381

 @AgencyFAPESP

http://www.fapesp.br 

 

Samuel Antenor | EurekAlert!

Further reports about: Big Bang Collider LHC Large Hadron Collider RHIC collision hadrons quark-gluon plasma

More articles from Physics and Astronomy:

nachricht Moon's crust underwent resurfacing after forming from magma ocean
22.11.2017 | University of Texas at Austin

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>