Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Method Makes Space Weather Easier to Predict

02.03.2015

Scientists can now gain a better understanding of space weather – the dreaded solar winds and flares – thanks to the development of high spatial resolution observation and computing methods. For the first time, it will thus be possible to study the interrelated events that occur on the sun and trigger solar activity.

To this effect, a current project funded by the FWF is in the process of developing new methods that can generate three-dimensional images and will allow scientists to study the chronological sequence and evolution of processes taking place in the sun’s interior. These new methods will make it possible to link detailed observational data about the sun with complex computer simulations of solar activity.


In a current project by the Austrian Science Fund FWF scientists are developing new methods that can generate three-dimensional images and will allow them to study the chronological sequence and evolution of processes taking place in the sun's interior.

© Institut für Physik, Universität Graz

The sun’s surface is turbulent and constantly in motion: Dynamo effects create magnetic fields which, together with currents, travel outward towards the sun’s surface, thereby determining the sun’s activity. The solar activity in turn influences how much radiation reaches the earth. Long-term variations of this activity can also affect the earth’s climate.

A Flood of Data About Solar Wind

The team headed by project leader Prof. Arnold Hanslmeier is particularly interested in what are known as solar magnetic flux tubes. These flux tubes were discovered only a few years ago and are a precursor of solar flares. Prof. Hanslmeier explains: "It is believed that flux tubes form underneath the sun’s surface a few days before a solar flare erupts. Yet the forces that generate these flux tubes remain largely unknown." The team is also interested in the heating mechanisms that occur on the sun’s surface and directly affect the sun’s lower atmosphere.

The methods being developed by Prof. Hanslmeier will make it possible to link data gained from high-resolution telescopic images with data generated by complex computer simulations. The conventional computation methods that are currently available are actually lagging behind the rapid development of solar telescopes and computer power, as the project leader explains: "New high-resolution solar telescopes generate such vast amounts of data that it is impossible to analyse all of the data individually. That requires automated processes – which is exactly what we are now developing. These processes will allow us to achieve unimaginable temporal and spatial resolution when computing solar dynamics. We are particularly excited about the upcoming opportunity to work with Europe’s largest solar telescope on the Canary Islands."

Segmented & Computed

More specifically, the aim of the project is to develop 2D and 3D algorithms that can calculate extremely small segments of solar magnetic flux tubes using imaging- and simulation data. This research is complemented by comparable segmentations of convective upward and downward flows of the sun’s hot plasma. Prof. Hanslmeier explains the purpose of these calculations: "Segmentation allows us to represent the solar magnetic flux tubes and convection currents as three-dimensional images. At the same time, we can observe how this three-dimensional representation evolves over time. This gives us an essential link between actual observations and theoretical simulations." For the team headed by Prof. Hanslmeier, this link is the key to gaining a better understanding of the mechanisms that lead to the formation of flux tubes and subsequently cause these flux tubes to develop into solar flares.

The findings of this FWF-funded project will therefore be a vital tool for scientists to not only better understand the intensity of solar flares and solar winds, but to also detect this solar activity sooner and take the necessary precautions. In light of the threat that strong solar winds can pose for essential electric infrastructure in space and here on earth, the significance of these findings will go far beyond fundamental scientific insight.

Scientific Contact:
Prof. Arnold Hanslmeier
University of Graz
Institute of Physics
Universitätsplatz 5
8010 Graz, Austria
+43 / 316 / 380 - 5275
arnold.hanslmeier(at)uni-graz.at

Austrian Science Fund FWF
Marc Seumenicht
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
+43 / (0)1 / 505 67 40 - 8111

Copy Editing & Distribution
PR&D – Public Relations for Research & Education
Mariannengasse 8
1090 Vienna, Austria
+43 / (0)1 / 505 70 44
contact(at)prd.at
www.prd.at

Dr. Katharina Schnell | PR&D – Public Relations for Research & Education
Further information:
http://www.fwf.ac.at/en/research-in-practice/project-presentations/2015/pv2015-kw10/

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>