Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New measurement of the mass of a strange atomic nucleus achieves very high degree of precision

17.06.2015

Results obtained at the MAMI particle accelerator in Mainz should add to the understanding of the "strong force"

An international team of physicists working at the Institute of Nuclear Physics at Johannes Gutenberg University Mainz (JGU) in Germany has measured the mass of a "strange" atomic nucleus with the aid of an innovative technique that is capable of significantly greater precision than that of previous methods.


View of the experimental hall at the MAMI accelerator: The mass of a strange atomic nucleus was measured with the help of the magnetic spectrometer that can be seen in the photo.

Ill.: Institute of Nuclear Physics, JGU

The researchers were able, for the first time worldwide, to observe the radioactive decay of artificially generated nuclei of super-heavy hydrogen at the Mainz MAMI particle accelerator using a combination of several magnetic spectrometers. They could then precisely determine the mass on the basis of accurate measurement of the decay product. The results have been published in the journal Physical Review Letters.

Measurements such as this are particularly valuable when it comes to understanding the fundamental "strong force" that holds nuclei together and is thus essentially responsible for the stability of matter. Even after decades of research, many of the details of this force are still unknown. The nuclei in matter that surrounds us consist of two building blocks, i.e., positively charged protons and electrically neutral neutrons. These interact in complex ways with and among each other.

What is important is that there is a powerful attraction between these particles that binds them together to form atomic nuclei and stops them flying apart. Then the mass of an atomic nucleus is less than that of the sum of the mass of its components. According to Einstein's famous formula E = mc2, this "missing mass" is represented by the energy of the bonds in a nucleus. This means that if the mass of a nucleus can be accurately measured, it is possible to determine the binding energy and thus draw conclusions with regard to the nature of the strong force.

Other strongly interacting particles, in addition to protons and neutrons, can theoretically be bound in a nucleus as well, such as so-called hyperons that are also known as "strange" neutrons. An atomic nucleus in which they are present is thus called a strange atomic nucleus or hypernucleus. It is possible to generate these artificially in a particle accelerator such as MAMI.

Such exotic particles can exist on earth for just a fraction of a second but it is possible that there may be large numbers of them deep in the cores of neutron stars, which are also held together by the strong force. There are many, as yet, unanswered questions about these spectacular star remnants out there in deepest space: How large are neutron stars? What is in the interior of their unobservable cores? How hot and how dense is it there?

Otherwise inaccessible details about the strong forces that not only hold strange nuclei but also neutron stars together can be determined by means of the study of hypernuclei and this approach can help explain the structure of minuscule atomic nuclei and gigantic neutron stars and how they are related.

Using the Mainz Microtron, the team of researchers headed by Professor Josef Pochodzalla and Dr. Patrick Achenbach generated a very heavy form of the common element hydrogen with a nucleus comprised of one proton, two neutrons, and a hyperon. This artificially created strange atomic nucleus has a mass approximately twice that of deuterium, the heaviest stable form of natural hydrogen.

In order to determine the mass of the strange hydrogen nucleus as accurately as possible, the nuclear physicists observed the radioactive decay of the nucleus using a combination of several magnetic spectrometers. In this context, these devices have a function similar to that of an electron microscope, although they actually operate on a much larger scale.

They use a strong magnetic field to guide particles and bring them together at a location where they can be measured by particle detectors. In order to achieve the greatest accuracy possible, the spectrometers are nearly 15 meters across and weigh more than 200 tons. Also necessary to obtain extremely precise results are a high energy, accurate focus, and stability of the accelerated particle beam. All this is possible to achieve using MAMI.

The researchers in Mainz were thus able to measure the binding energy of the hyperon in the nucleus of super-heavy hydrogen. It is roughly equivalent to the total binding energy in the nucleus of deuterium. Of particular interest to the researchers is the still unanswered question of whether this binding energy changes when the hyperon is present in an equally heavy helium nucleus instead of a hydrogen nucleus. If so, it would mean that the force of attraction exerted by the protons and neutrons on the hyperon differs in the two nuclei, thus breaking the symmetry between the components making up the nuclei.

Publication:
A. Esser et al. (Kollaboration A1)
Observation of Λ-H-4 Hyperhydrogen by Decay-Pion Spectroscopy in Electron Scattering
Physical Review Letters, 9 June 2015
DOI: 10.1103/PhysRevLett.114.232501
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.232501


Further information:
PD Dr. Patrick Achenbach
Institute of Nuclear Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-25777
e-mail: patrick@kph.uni-mainz.de
http://www.kph.uni-mainz.de/eng/

Weitere Informationen:

http://www.uni-mainz.de/presse/19466_ENG_HTML.php - press release ;
http://www.kph.uni-mainz.de/eng/ - Institute of Nuclear Physics

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>