Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New magnetism research brings high-temp superconductivity applications closer

11.04.2016

A research team led by the U.S. Department of Energy's (DOE) Argonne National Laboratory has discovered that only half the atoms in some iron-based superconductors are magnetic, providing a conclusive demonstration of the wave-like properties of metallic magnetism in these materials.

The discovery allows for a clearer understanding of the magnetism in some compounds of iron, the iron arsenides, and how it helps induce superconductivity, the resistance-free flow of electrical current through a solid-state material, which occurs at temperatures up to 138 degrees Kelvin, or minus -135 degrees Celsius.


Magnetic order in (Sr,Na)Fe2As2: The crystal structure contains planes of iron atoms (shown as red spheres). Half the iron sites have a magnetization (shown as red arrows), which points either up or down, but the other half have zero magnetization. This shows that the magnetism results from the constructive and destructive interference of two magnetization waves, a clear sign that the magnetic electrons are itinerant, which means they are not confined to a single site. The same electrons are responsible for the superconductivity at lower temperature.

Credit: Osborn et. al

"In order to be able to design novel superconducting materials, one must understand what causes superconductivity," said Argonne senior physicist Raymond Osborn, one of the project's lead researchers.

"Understanding the origin of magnetism is a first vital step towards obtaining an understanding of what makes these materials superconducting. Given the similarity to other materials, such as the copper-based superconductors, our goal was to improve our understanding of high-temperature superconductivity."

From an applied perspective, such an understanding would allow for the development of magnetic energy-storage systems, fast-charging batteries for electric cars and a highly efficient electrical grid, said Argonne senior physicist Stephan Rosenkranz, the project's other lead researcher.

Superconductors reduce power loss. The use of high-temperature superconducting materials in the electrical grid, for example, would significantly reduce the large amount of electricity that is lost as it travels though the grid, enabling the grid to operate more efficiently.

The researchers were able to show that the magnetism in these materials was produced by mobile electrons that are not bound to a particular iron atom, producing waves of magnetization throughout the sample. They discovered that, in some iron arsenides, two waves interfere to cancel out, producing zero magnetization in some atoms. This quantum interference, which has never been seen before, was revealed by Mössbauer spectroscopy, which is extremely sensitive to the magnetism on each iron site.

Researchers also used high-resolution X-ray diffraction at the Advanced Photon Source (APS) and neutron diffraction at Oak Ridge National Laboratory's Spallation Neutron Source (SNS) to determine the chemical and magnetic structures and to map the electronic phase diagram of the samples used. The APS and SNS are DOE Office of Science User Facilities.

"By combining neutron diffraction and Mössbauer spectroscopy, we were able to establish unambiguously that this novel magnetic ground state has a non-uniform magnetization that can only be produced by itinerant electrons. These same electrons are responsible for the superconductivity," Rosenkranz said.

The research is available in the January 25, 2016 online edition of Nature Physics.

Next, Rosenkranz and Osborn plan to characterize the magnetic excitations, or fluctuations of iron-based superconductors, to determine how they to relate to and possibly cause superconductivity.

###

The research team also included J.M. Allred, D.E. Bugaris, D.Y. Chung, H. Claus and S.H. Lapidus of Argonne; K.M. Taddei, M.J. Krogstad and O. Chmaissem of Argonne and Northern Illinois University; M.G. Kanatzidis of Argonne and Northwestern University; D.E. Brown of Northern Illinois University; J. Kang, R.M. Fernandes of the University of Minnesota; and I. Eremin of Ruhr-Universtat Bochum in German and the National University of Science and Technology in Moscow.

This work was supported by the DOE Office of Science.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science. The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

Media Contact

Jared Sagoff
jsagoff@anl.gov
630-252-5549

 @argonne

http://www.anl.gov 

Jared Sagoff | EurekAlert!

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>