Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New industrial research technique for analyzing gallium nitride on the nanometer scale

07.11.2014

Gallium nitride is difficult to produce and difficult to handle – and the key to the development of blue LEDs, which won this year’s Nobel Prize in Physics.

The award went to three Japanese researchers who were the first to produce high-quality gallium nitride (GaN) layers and put them into series production back in 1993. Now, researchers and engineers around the world are working on analyzing and optimizing this material.


Near-field microscope with a fragment of a gallium nitride wafer.

Picture Source: Fraunhofer ILT, Aachen, Germany.

The Fraunhofer Institute for Laser Technology ILT has worked closely with RWTH Aachen University’s I. Institute of Physics (IA) to develop an analysis technology that, for the very first time, allows the structural and electronic properties of GaN and GaN composites to be studied optically on the nanometer level.

Industry’s need for mass-producible LEDs is growing, whether for smartphone, computer and TV screens or for the lighting sector. One important reason is that LEDs use many times less energy than incandescent bulbs, halogen bulbs or even energy-saving bulbs. The development of the blue LED was the last step in creating white LED light – a particularly pleasant light that significantly boosts user acceptance of the technology, for instance in home applications. Developing increasingly efficient components will rely on a quick and cost-effective analysis technique.

Optical analysis on the nanometer scale

The resolution of conventional optical microscopes reaches its physical limits when confronted with objects on the nanometer scale. Because of the light source employed, tiny structures in the nanometer range – such as those you find in modern semiconductor components – cannot be brought into focus. This rules out optical analysis techniques. Near-field microscopy circumvents this fundamental limitation and penetrates the nanometer domain to provide an optical view. This places extremely high demands on the light source used.

Aachen laser system for using near-field microscopy techniques on gallium nitride

In collaboration with fellow researchers from the Chair for Experimental Physics at RWTH Aachen University, scientists from Fraunhofer ILT have spent the past few years developing an innovative, broadband tunable laser system that is geared toward the particular requirements of semiconductor analysis. Wavelength can be adjusted to the material under inspection, which enables the new system to investigate a wide range of materials. 

In contrast to the solutions available on the market to date and those employed in research and development, the new system from Aachen provides the means for much faster spectroscopic analyses. It has also opened up access to material systems that were beyond the capacities of previous systems. This includes GaN and GaN composites.

Using the new analysis system, last year the researchers in Aachen were able to obtain an optical 2D image showing tensions in the crystal structure of undoped GaN wafers for the very first time. Computer simulations helped quantify the exact extent of the tension. Recently the technique was also applied to a variety of doped GaN layers within complex structures. It’s the first time an optical technique has been available to study the structural and electronic properties of GaN and GaN composites on the nanometer scale.

Cost-effective, precise and non-destructive

Near-field microscopy offers cost and quality benefits over standard analysis techniques. The structural properties of thin GaN layers are currently studied using transmission electron microscopy; however, the costs incurred are extremely high, due in part to the laborious sample preparation process. Near-field analysis can usually be conducted without any preparation. Another benefit concerns secondary ion mass spectrometry, which is used to study the electronic properties.

Although this technique can be used to determine electronic properties along an axis at the nanometer level, it isn’t yet possible to laterally ascertain the concentration of doping atoms at a comparable resolution. The technique also damages the samples. In contrast, near-field microscopy offers nanometer-scale resolution in all dimensions. It is a completely non-destructive technique and can be implemented under normal conditions.

Potential applications for the analysis system

Near-field microscopy is suitable for a range of applications. When used in close consultation with the developers of new semiconductor components, for instance, the method can help optimize process parameters in a targeted way. The analysis also aids in the understanding of physical processes from a very early stage in development, particularly at the interfaces between the individual layers. These findings can shape subsequent development stages significantly. In high-frequency and power electronics, too, GaN is becoming more and more common as a component due to its physical properties. Near-field microscopic analysis techniques are ideally suited for researching these materials.

Contact

Dr. Fabian Gaußmann
Laser Measurement Technology
Phone +49 241 8906-489
fabian.gaussmann@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT

Prof. Thomas Taubner
I. Institute of Physics (IA)
Phone +49 241 80 20260
taubner@physik.rwth-aachen.de
RWTH Aachen University


Weitere Informationen:

http://www.ilt.fraunhofer.de
http://www.rwth-aachen.de

Petra Nolis | Fraunhofer-Institut

More articles from Physics and Astronomy:

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>