Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Coronal Mass Ejection Simulations Hold Promise for Future of Space Weather Forecasting

03.03.2016

Researchers at Nagoya University and the National Institute of Polar Research, Japan, successfully profiled passage of a magnetic cloud within a mass ejection event from the Sun. This success in the accurate simulation of a magnetic flux rope’s arrival on Earth provides vital improvements for real-time forecasting of space weather events.

Researchers develop a successful and validated new model of coronal mass ejections to improve space weather forecasting.


A coronal mass ejection (CME) event showing a representation of the flux rope anchored at the sun and the propagation of the magnetic flux rope through space toward Earth. The white shaded lines indicate the magnetic field lines. Red shade indicates high speed stream in the front of the CME.

Copyright : Nagoya University

Nagoya, Japan – Coronal mass ejections (CMEs) are massive expulsions of magnetic flux into space from the solar corona, the ionized atmosphere surrounding the sun.

Magnetic storms arising from CMEs pose radiation hazards that can damage satellites and that can negatively impact communications systems and electricity on Earth. Accurate predictions of such events are invaluable in space weather forecasting.

A new and robust simulation code for CME events was developed based on the realistic description of the mechanisms behind CME generation and their propagation through space. An article recently published in Space Weather presents their results from the method, which was successfully validated using observational data from a series of CME events reaching the Earth’s position around Halloween of 2003.

“Our model is able to simulate complex ‘flux ropes’, taking into account the mechanisms behind CME generation derived from real-time solar observations. With this model, we can simulate multiple CMEs propagating through space. A part of the magnetic flux of the original flux rope inside the CME directed southward was found to reach the Earth, and that can cause a magnetic storm,” explains lead author Daikou Shiota of the Nagoya University Institute of Space and Earth Environmental Research.

The new model represents a significant step in space weather research. “The inclusion of the flux rope mechanism helps us predict the amplitude of the magnetic field within a CME that reaches the Earth’s position, and accurately predicts its arrival time,” Shiota says.

A series of CMEs occurring in late-October 2003 released large flares of magnetic energy that reached the Earth several days later, causing radio blackouts and satellite communications failures. Data from these events were used to validate the approach taken in the new model.

“In our validation, we were able to predict the arrival of a huge magnetic flux capable of causing one of the largest magnetic storms in the last two decades,” says coauthor Ryuho Kataoka of the National Institute of Polar Research and the Department of Polar Science, SOKENDAI (Graduate University for Advanced Studies).

“Because our model does not simulate the solar coronal region, its computational speed is fast enough to operate under real-time forecasting conditions. This has various applications in ensemble space weather forecasting, radiation belt forecasting, and for further study of the effects of CME-generated solar winds on the larger magnetic structure of our solar system.” Shiota says.

This is a new generation of a well-developed complex flux rope within a CME model, and it provides a valuable step towards enhanced operational space weather forecasting. These findings will significantly contribute to accurately predicting magnetic fields in space and enhancing our understanding of the mechanisms behind CME events.

The article “Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO-CME)” was published in Space Weather, at doi:10.1002/2015SW001308


Journal information

Space Weather, at doi:10.1002/2015SW001308

Koomi Sung | Research SEA
Further information:
http://www.researchsea.com
http://en.nagoya-u.ac.jp/index.html

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>