Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Coronal Mass Ejection Simulations Hold Promise for Future of Space Weather Forecasting

03.03.2016

Researchers at Nagoya University and the National Institute of Polar Research, Japan, successfully profiled passage of a magnetic cloud within a mass ejection event from the Sun. This success in the accurate simulation of a magnetic flux rope’s arrival on Earth provides vital improvements for real-time forecasting of space weather events.

Researchers develop a successful and validated new model of coronal mass ejections to improve space weather forecasting.


A coronal mass ejection (CME) event showing a representation of the flux rope anchored at the sun and the propagation of the magnetic flux rope through space toward Earth. The white shaded lines indicate the magnetic field lines. Red shade indicates high speed stream in the front of the CME.

Copyright : Nagoya University

Nagoya, Japan – Coronal mass ejections (CMEs) are massive expulsions of magnetic flux into space from the solar corona, the ionized atmosphere surrounding the sun.

Magnetic storms arising from CMEs pose radiation hazards that can damage satellites and that can negatively impact communications systems and electricity on Earth. Accurate predictions of such events are invaluable in space weather forecasting.

A new and robust simulation code for CME events was developed based on the realistic description of the mechanisms behind CME generation and their propagation through space. An article recently published in Space Weather presents their results from the method, which was successfully validated using observational data from a series of CME events reaching the Earth’s position around Halloween of 2003.

“Our model is able to simulate complex ‘flux ropes’, taking into account the mechanisms behind CME generation derived from real-time solar observations. With this model, we can simulate multiple CMEs propagating through space. A part of the magnetic flux of the original flux rope inside the CME directed southward was found to reach the Earth, and that can cause a magnetic storm,” explains lead author Daikou Shiota of the Nagoya University Institute of Space and Earth Environmental Research.

The new model represents a significant step in space weather research. “The inclusion of the flux rope mechanism helps us predict the amplitude of the magnetic field within a CME that reaches the Earth’s position, and accurately predicts its arrival time,” Shiota says.

A series of CMEs occurring in late-October 2003 released large flares of magnetic energy that reached the Earth several days later, causing radio blackouts and satellite communications failures. Data from these events were used to validate the approach taken in the new model.

“In our validation, we were able to predict the arrival of a huge magnetic flux capable of causing one of the largest magnetic storms in the last two decades,” says coauthor Ryuho Kataoka of the National Institute of Polar Research and the Department of Polar Science, SOKENDAI (Graduate University for Advanced Studies).

“Because our model does not simulate the solar coronal region, its computational speed is fast enough to operate under real-time forecasting conditions. This has various applications in ensemble space weather forecasting, radiation belt forecasting, and for further study of the effects of CME-generated solar winds on the larger magnetic structure of our solar system.” Shiota says.

This is a new generation of a well-developed complex flux rope within a CME model, and it provides a valuable step towards enhanced operational space weather forecasting. These findings will significantly contribute to accurately predicting magnetic fields in space and enhancing our understanding of the mechanisms behind CME events.

The article “Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO-CME)” was published in Space Weather, at doi:10.1002/2015SW001308


Journal information

Space Weather, at doi:10.1002/2015SW001308

Koomi Sung | Research SEA
Further information:
http://www.researchsea.com
http://en.nagoya-u.ac.jp/index.html

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>