Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New chip could bring highest level of encryption to any mobile device


First use of quantum technology to create a random number generator that is both tiny and fast

Random number generators are crucial to the encryption that protects our privacy and security when engaging in digital transactions such as buying products online or withdrawing cash from an ATM. For the first time, engineers have developed a fast random number generator based on a quantum mechanical process that could deliver the world's most secure encryption keys in a package tiny enough to use in a mobile device.

Using photonic integrated circuit technology, researchers made a tiny, yet fast quantum random number generator. The small chip in the middle of the picture contains two of the random number generators, which together measure 6 by 2 millimeters. For comparison, the coin is 16.25 millimeters in diameter.

Credit: Daniel Bartolome & Ona Bombí, ICFO

In The Optical Society's journal for high impact research, Optica, the researchers report on their fully integrated device for random number generation. The new work represents a key advancement on the path to incorporating quantum-based random number generators -- delivering the highest quality numbers and thus the highest level of security -- into computers, tablets and mobile phones.

"We've managed to put quantum-based technology that has been used in high profile science experiments into a package that might allow it to be used commercially," said the paper's first author, Carlos Abellan, a doctoral student at ICFO-The Institute of Photonic Sciences, a member of the Barcelona Institute of Science and Technology, Spain. "This is likely just one example of quantum technologies that will soon be available for use in real commercial products. It is a big step forward as far as integration is concerned."

The new device operates at speeds in the range of gigabits per second, fast enough for real-time encryption of communication data, such as a phone or video calls, or for encrypting large amounts of data traveling to and from a server like that used by a social media platform. It could also find use in stock market predictions and complex scientific simulations of random processes, such as biological interactions or nuclear reactions.

Shrinking the truly random

The random number generators used today are based on computer algorithms or the randomness of physical processes -- essentially complex versions of rolling dice over and over again to get random numbers. Although the numbers generated appear to be random, knowing certain information, such as how many "dice" are being used, can allow hackers to sometimes figure out the numbers, leaving secured data vulnerable to hacking.

The new device, however, generates random numbers based on the quantum properties of light, a process that is inherently random and thus impossible to predict no matter how much information is known. Although other researchers have developed quantum random number generators, they have all been either larger or slower than the device reported in the Optica paper.

"We have previously shown that the quantum processes taking place exhibit true randomness," said Valerio Pruneri, who led the collaborative research effort. "In this new paper, we made a huge technological advance by using a new design that includes two lasers that interfere with each other in a confined space. This makes the device smaller while keeping the same properties that were used in the past experiments."

Creating a practical device

The researchers used photonic integrated circuit (PIC) technology to create two quantum number generators that together measure 6 by 2 millimeters. PIC technology offers a way to integrate photonic components -- such as the lasers and detectors used by the new quantum random generator -- onto a chip with a small footprint and low power consumption. Most importantly, PIC-based devices can be integrated with traditional electronics, which could allow the random number generator to be used with the driving, reading and processing electronics necessary for computation or communications.

"We proved that quantum technologies are within practical reach by exploiting PICs," said Pruneri. "Quantum random number generation as well as quantum cryptography and other quantum-based technologies will benefit from PIC-based technology because it allows one to build commercial and innovative products. Ours is a first demonstration."

This work was a multi-institutional effort that included researchers from ICFO-The Institute of Photonic Sciences, VLC Photonics S.L., Universitat Politècnica de Valencia, ICREA- Institució Catalana de Recerca i Estudis Avancats, all in Spain, as well as Politecnico di Milano in Italy.


Paper: C. Abellan, W. Amaya, D. Domenech, P. Muñoz, J. Capmany, S. Longhi, M.W. Mitchell, V. Pruneri. "A quantum entropy source on an InP photonic integrated circuit for random number generation," Optica, 3, 9, 989 (2016). DOI: 10.1364/OPTICA.000989.

About Optica

Optica is an open-access, online-only journal dedicated to the rapid dissemination of high-impact peer-reviewed research across the entire spectrum of optics and photonics. Published monthly by The Optical Society (OSA), Optica provides a forum for pioneering research to be swiftly accessed by the international community, whether that research is theoretical or experimental, fundamental or applied. Optica maintains a distinguished editorial board of more than 40 associate editors from around the world and is overseen by Editor-in-Chief Alex Gaeta, Columbia University, USA. For more information, visit Optica.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and entrepreneurs who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit

Media Contact

Rebecca Andersen


Rebecca Andersen | EurekAlert!

Further reports about: OSA Photonic lasers mobile device quantum random randomness

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>