Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA’s LRO Spacecraft Captures Images of LADEE’s Impact Crater

29.10.2014

NASA’S Lunar Reconnaissance Orbiter (LRO) spacecraft has spied a new crater on the lunar surface; one made from the impact of NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) mission.

“The Lunar Reconnaissance Orbiter Camera (LROC) team recently developed a new computer tool to search Narrow Angle Camera (NAC) before and after image pairs for new craters, the LADEE impact event provided a fun test, said Mark Robinson, LROC principal investigator from Arizona State University in Tempe. “As it turns there were several small surface changes found in the predicted area of the impact, the biggest and most distinctive was within 968 feet (295 meters) of the spot estimated by the LADEE operations team. What fun!”


LRO has imaged the LADEE impact site on the eastern rim of Sundman V crater. The image was created by ratioing two images, one taken before the impact and another afterwards. The bright area highlights what has changed between the time of the two images, specifically the impact point and the ejecta.

Image Credit: NASA/Goddard/Arizona State University

The LADEE mission ended on April 18, 2014, with the spacecraft’s planned impact into the eastern rim of Sundman V crater on the far side of the moon.

LADEE's engines fired April 11, 2014, to perform a final orbital maintenance maneuver and adjust to guarantee it would impact on the farside of the moon and away from the Apollo landing sites. Over a seven-day period, LADEE's orbit decreased and the spacecraft orbited very low to the surface and close to the walls of lunar craters and mountain ridges to give the team a chance to collect valuable science data.

Finally, LADEE impacted the eastern rim of Sundman V crater on April 18. The impact site is about half a mile (780 meters) from the crater rim with an altitude of about 8,497 feet (2,590 meters) and was only about two tenths of a mile (300 meters) north of the location mission controllers predicted based on tracking data.

The impact crater is small, less than ten feet (three meters) in diameter, barely resolvable by the LROC NAC. The crater is small because the spacecraft -- compared to most celestial impacts -- was not traveling very fast, approximately 3,800 miles per hour (1,699 meters per second) and had a low mass and a low density.

The size of the impact crater made it hard to identify among the myriad of small fresh craters on the lunar surface. Images acquired of the impact region before the impact, were compared with images obtained after the impact to identify the crater.

Since the NAC images are so large (250 mega-pixels) and the new crater is so small, the LROC team co-registered the before and after images (called a temporal pair) and then divided the before image by the after image. By doing this, changes to the surface become evident.

The ejecta from the impact forms a triangular pattern primarily downrange to the west, extending about 656-984 feet (200-300 meters) from the impact site. There is also a small triangular area of ejecta up range but it extends only about 66-98 feet (20-30 meters). The ejecta pattern is oriented northwest, consistent with the direction the spacecraft was traveling when it impacted the surface.

"I'm happy that the LROC team was able to confirm the LADEE impact point," said Butler Hine, LADEE project manager at Ames Research Center in Moffett Field, California. "It really helps the LADEE team to get closure and know exactly where the product of their hard work wound up."

LADEE launched Sept. 6, 2013 from Pad 0B at the Mid-Atlantic Regional Spaceport, at NASA's Wallops Flight Facility, Wallops Island, Virginia. LADEE gathered detailed information about the structure and composition of the thin lunar atmosphere and determining whether dust is being lofted into the lunar sky.

LRO launched September 18, 2009. LRO continues to bring the world astounding views of the lunar surface and a sizable collection of lunar data for research.

LRO recently received a second two-year extended mission. Under the extended mission, LRO will study the seasonal volatile cycle; determine how many small meteorites are currently hitting the moon and their effects; characterize the structure of the lunar regolith; investigate the moon’s interaction with the space environment; and reveal more about the lunar interior using observations of the moon’s surface.

“With LRO, NASA will study our nearest celestial neighbor for at least two more years,” said John Keller, LRO project scientist from NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “LRO continues to increase our understanding of the moon and its environment.”

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the LRO mission. NASA's Ames Research Center in Moffett Field, California, designed, built, tested and managed operations for the LADEE mission.

For information on LRO, visit: http://www.nasa.gov/lro

For more information on LROC, visit: http://lroc.sese.asu.edu

Nancy Neal-Jones
NASA's Goddard Space Flight Center

Nancy Neal-Jones | Eurek Alert!
Further information:
http://www.nasa.gov/content/goddard/nasa-s-lro-spacecraft-captures-images-of-ladee-s-impact-crater/

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>