Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's Hubble Telescope detects 'sunscreen' layer on distant planet

12.06.2015

NASA's Hubble Space Telescope has detected a stratosphere, one of the primary layers of Earth's atmosphere, on a massive and blazing-hot exoplanet known as WASP-33b.

The presence of a stratosphere can provide clues about the composition of a planet and how it formed. This atmospheric layer includes molecules that absorb ultraviolet and visible light, acting as a kind of 'sunscreen' for the planet it surrounds. Until now, scientists were uncertain whether these molecules would be found in the atmospheres of large, extremely hot planets in other star systems. These findings will appear in the June 12 issue of the Astrophysical Journal.


WASP-33b's stratosphere was detected by measuring the drop in light as the planet passed behind its star (top). Temperatures in the low stratosphere rise because of molecules absorbing radiation from the star (right). Without a stratosphere, temperatures would cool down at higher altitudes (left).

Courtesy of NASA/Goddard

'Some of these planets are so hot in their upper atmospheres, they're essentially boiling off into space,' said Avi Mandell, a planetary scientist at NASA's Goddard Space Flight Center in Greenbelt, Md., and a co-author of the study. 'At these temperatures, we don't necessarily expect to find an atmosphere that has molecules that can lead to these multilayered structures.'

In Earth's atmosphere, the stratosphere sits above the troposphere -- the turbulent, active-weather region that reaches from the ground to the altitude where nearly all clouds top out. In the troposphere, the temperature is warmer at the bottom -- ground level -- and cools down at higher altitudes.

The stratosphere is just the opposite. In this layer, the temperature increases with altitude, a phenomenon called temperature inversion. On Earth, temperature inversion occurs because ozone in the stratosphere absorbs much of the sun's ultraviolet radiation, preventing it from reaching the surface, protecting the biosphere, and therefore warming the stratosphere instead.

Similar temperature inversions occur in the stratospheres of other planets in our solar system, such as Jupiter and Saturn. In these cases, the culprit is a different group of molecules called hydrocarbons. Neither ozone nor hydrocarbons, however, could survive at the high temperatures of most known exoplanets, which are planets outside our solar system. This leads to a debate as to whether stratospheres would exist on them at all.

Using Hubble, the researchers have settled this debate by identifying a temperature inversion in the atmosphere of WASP-33b, which has about four-and-a-half times the mass of Jupiter. Team members also think they know which molecule in WASP-33b's atmosphere caused the inversion -- titanium oxide.

'These two lines of evidence together make a very convincing case that we have detected a stratosphere on an exoplanet,' said Korey Haynes, lead author of the study. Haynes was a graduate student at George Mason University in Fairfax, Va., and was working at Goddard with Mandell when the research was conducted.

The researchers analyzed observations made with Hubble's Wide Field Camera 3 by co-author Drake Deming at the University of Maryland in College Park. Wide Field Camera 3 can capture a spectrum of the near-infrared region where the signature for water appears. Scientists can use the spectrum to identify water and other gases in a distant planet's atmosphere and determine its temperature.

Haynes and her colleagues used the Hubble observations, and data from previous studies, to measure emission from water and compare it to emission from gas deeper in the atmosphere. The team determined that emission from water was produced in the stratosphere at about 6,000 degrees Fahrenheit. The rest of the emission came from gas lower in the atmosphere that was at a temperature about 3,000 degrees Fahrenheit.

The team also presented the first observational evidence that WASP-33b's atmosphere contains titanium oxide, one of only a few compounds that is a strong absorber of visible and ultraviolet radiation and capable of remaining in gaseous form in an atmosphere as hot as this one.

'Understanding the links between stratospheres and chemical compositions is critical to studying atmospheric processes in exoplanets,' said co-author Nikku Madhusudhan of the University of Cambridge, United Kingdom. 'Our finding marks a key breakthrough in this direction.'

###

For images and more information about Hubble, visit: http://www.nasa.gov/hubble.

Media Contact

Elizabeth Zubritsky
Elizabeth.a.zubritsky@nasa.gov
301-614-5438

 @NASAGoddard

http://www.nasa.gov/goddard 

Elizabeth Zubritsky | EurekAlert!

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>