Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA plans twin sounding rocket launches over Norway this winter

25.11.2015

This winter, two sounding rockets will launch through the aurora borealis over Norway to study how particles move in a region near the North Pole where Earth's magnetic field is directly connected to the solar wind. After the launch window opens on Nov. 27, 2015, the CAPER and RENU 2 rockets will have to wait for low winds and a daytime aurora before they can send their instrument payloads soaring through the Northern Lights.

Both instrument packages are studying phenomena related to the cusp aurora, a particular subset of the Northern Lights in which energetic particles are accelerated downward into the atmosphere directly from the solar wind - that is, the constant outward flow of solar material from the sun.


An aurora is seen over Greenland on April 2, 2011. Two NASA sounding rockets will launch into a particular type of aurora called a cusp aurora this winter to study different processes related to the particle acceleration that causes cusp auroras. The cusp is a region near the North Pole where Earth's magnetic field is directly connected to the solar wind, allowing daytime auroras to form.

Credits: NASA/University of Maryland, College Park/Robert Michell

Though cusp auroras are not particularly rare, they are often difficult to spot because they only happen during the day, when sunlight usually drowns out what would otherwise be a spectacular light show. However, because the magnetic North Pole is offset from the geographic North Pole, it's often possible to see cusp auroras in Northern Europe near the winter solstice.

"The magnetic pole is tilted towards North America, putting this magnetic opening--the cusp--at a higher latitude on the European side," said Jim LaBelle, principal investigator on the CAPER sounding rocket at Dartmouth College in Hanover, New Hampshire. "Combine that extra-high latitude with the winter solstice--when nights are longest, especially as you go farther north--and you can sometimes see this daytime aurora with the naked eye."

The two sounding rocket teams will also employ data from ground-based radars to detect the cusp aurora even in the case of clouds.

CAPER

CAPER, short for Cusp Alfven and Plasma Electrodynamics Rocket, will be first in the queue to launch. CAPER is investigating the electromagnetic, or EM, waves that can accelerate electrons down into Earth's atmosphere or up out to space. The electrons that are accelerated downward collide with particles in the atmosphere, releasing light and creating the cusp aurora--so spotting aurora activity at the cusp alerts the scientists that the EM wave motions they're interested in must also be present.

CAPER, flying on a four-stage Oriole IV sounding rocket, carries three instruments--one to measure low-frequency EM waves, one to measure high-frequency EM waves, and one to measure the number of particles at different energy levels. LaBelle's team will compare these observations to get a better idea of how the EM waves accelerate the particles.

"The difficulty is measuring the high-frequency waves and their associated particles," said LaBelle. "They're moving at up to a million cycles per second, so the instruments have to be able to detect changes in the waves and collect enough particles to match up."

RENU 2

The other sounding rocket to launch, a four-stage Black Brant XII-A, is the second iteration of the Rocket Experiment for Neutral Upwelling, or RENU 2, which will study the relationship between the inflow of electrons that creates the cusp aurora, electric currents flowing along magnetic field lines, and dense columns of heated neutral atoms in the upper atmosphere.

Though scientists have long known that the density of neutral atoms within the atmosphere can change throughout the day because of heating by sunlight, the original understanding was that the heating--and the extra-dense layers of neutral particles--was driven horizontally. However, some satellites have hit speed bumps as they have orbited through Earth's magnetic cusp--their acceleration briefly slowed, which indicates a small vertical slice of higher-density neutral atoms that are harder to travel through.

"When solar wind electrons collide with atmospheric electrons, they transfer some of their energy, heating the atmospheric electrons," said Marc Lessard, principal investigator for RENU 2 at the University of New Hampshire in Durham. "The higher heat means the electron populations expand upward along the magnetic field lines."

This upward flow of negatively-charged particles creates a vertical electric field, which in turn pulls up the positively-charged and neutral particles, increasing the atmospheric density in columns rather than horizontal layers. To study the phenomenon, RENU 2 will carry several instruments, including instruments to measure the electric and magnetic fields, neutral and charged particle flows, and temperatures.

Though CAPER and RENU 2 will collect data for only a few minutes each, suborbital sounding rockets are a valuable way to study space and the upper atmosphere at relatively low cost.

The CAPER and RENU 2 launches are supported through NASA's Sounding Rocket Program at the Goddard Space Flight Center's Wallops Flight Facility in Virginia. NASA's Heliophysics Division manages the sounding rocket program.

Susan Hendrix | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>