Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA-funded FOXSI to Observe X-Rays From Sun

09.12.2014

An enormous spectrum of light streams from the sun. We're most familiar with the conventional visible white light we see with our eyes from Earth, but that's just a fraction of what our closest star emits.

NASA regularly watches the sun in numerous wavelengths because different wavelengths provide information about different temperatures and processes in space. Looking at all the wavelengths together helps to provide a complete picture of what's occurring on the sun over 92 million miles away – but no one has been able to focus on high energy X-rays from the sun until recently.


The Focusing Optics X-ray Solar Imager, or FOXSI, mission launched for the first time in November 2012, as shown here. It will fly again on a sounding rocket for a 15-minute flight in December 2014 to observe hard X-rays from the sun.

Image Credit: NASA/FOXSI

In early December 2014, the Focusing Optics X-ray Solar Imager, or FOXSI, mission will launch aboard a sounding rocket for a 15-minute flight with very sensitive hard X-ray optics to observe the sun. This is FOXSI’s second flight – now with new and improved optics and detectors. FOXSI launched previously in November 2012. The mission is led by Säm Krucker of the University of California in Berkeley.

Due to launch from White Sands Missile Range in New Mexico, on Dec. 9, 2014, FOXSI will be able to collect six minutes worth of data during the 15-minute flight. Sounding rockets provide a short trip for a relatively low price – yet allow scientists to gather robust data on various things, such as X-ray emission, which cannot be seen from the ground as they are blocked by Earth's atmosphere.

"Hard X-rays are a signature of particles accelerating on the sun," said Steven Christe, the project scientist for FOXSI at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "The sun accelerates particles when it releases magnetic energy. The biggest events like solar flares release giant bursts of energy and send particles flying, sometimes directed towards the Earth. But the sun is actually releasing energy all the time and that process is not well-understood."

Scientists want to understand these energy releases both because they contribute to immense explosions on the sun that can send particles and energy toward Earth, but also because that energy helps heat up the sun's atmosphere to temperatures of millions of degrees -- 1,000 times hotter than the surface of the sun itself. Observing many wavelengths of light allows us to probe different temperatures within the sun’s atmosphere. Looking for hard X-rays, is not only one of the best ways to measure the highest temperatures, up to tens of millions of degrees, but it also helps track accelerated particles.

The sensitivity of the FOXSI instrument means the team can investigate very faint events on the sun, including tiny energy releases commonly known as nanoflares. Nanoflares are thought to occur constantly, but are so small that we can’t see them with current telescopes. Spotting hard X-rays with FOXSI would be a confirmation that these small flares do exist. Moreover, it would suggest that nanoflares behave in a similar fashion as larger flares, accelerating particles in much the same way that big flares do.

"It's not necessarily true that these small flares accelerate particles. Perhaps they are just small heating events and the physics is different," said Christe. "That's one of the things we're trying to figure out."

Viewing such faint events requires extra sensitive optics. FOXSI carries something called grazing-incidence optics -- built by NASA's Marshall Space Flight Center in Huntsville, Alabama -- that are unlike any previous ones launched into space for solar observations. Techniques to collect and observe high energy X-rays streaming from the sun have been hampered by the fact that these wavelengths cannot be focused with conventional lenses the way visible light can be. When X-rays encounter most materials, including a standard glass lens, they usually pass right through or are absorbed. Such lenses can't, therefore, be used to adjust the X-ray's path and focus the incoming beams. So X-ray telescopes have previously relied on imaging techniques that don’t use focusing. This is effective when looking at a single bright event on the sun, such as the large burst of X-rays from a solar flare, but it doesn't work as well when searching for many faint events simultaneously.

The FOXSI instrument makes use of mirrors that can successfully cause x-rays to reflect -- as long as the x-ray mirrors are nearly parallel to the incoming X-rays. Several of these mirrors in combination help collect the X-ray light before funneling it to the detector. This focusing makes faint events appear brighter and crisper.

The FOXSI launch is scheduled for Dec. 9 between 2 and 3 pm EST. The shutter door on the optics system opens up after the payload reaches an altitude of 90 miles, one minute after launch. FOXSI then begins six minutes of observing the sun. After the observations, the door on the optics system closes. The rocket deploys a parachute and the instruments float down to the ground in the hopes of being used again.

The FOXSI mission made it through this process successfully once before, when it flew in 2012. On its first flight, the telescope successfully viewed a flare in progress. On this second flight, the team has updated some of the optics to be more sensitive and has removed insulation blankets that blocked some of the X-rays during the last flight. They also upgraded some of the detectors with new detectors built by the Japanese Aerospace Exploration Agency using a new detector material. Last time they used silicon and this time they are using cadmium telluride.

Such refurbishing illustrates a key value of sounding rockets: Making adjustments to the instruments on relatively low-cost flights has great benefit for future missions. By testing FOXSI on a sounding rocket, it can be perfected to use on a larger satellite with even larger, more sensitive optics.

In addition to developing technology, these low-cost missions help train students and young scientists.

“Sounding rockets are a great way for students to be heavily involved in every aspect of a space mission, from electronics testing to observational planning,” said Lindsay Glesener, FOXSI’s project manager at the University of California in Berkeley, who was also a graduate student during FOXSI’s first flight. “Development on low-cost missions is the way that,scientists, engineers, and even the telescopes get prepared to work on an eventual satellite mission.”

FOXSI is a collaboration between the United States and the Japanese Aerospace Exploration Agency. FOXSI is supported through NASA’s Sounding Rocket Program at the Goddard Space Flight Center’s Wallops Flight Facility in Virginia. NASA’s Heliophysics Division manages the sounding rocket program.


Karen C. Fox
NASA's Goddard Space Flight Center, Greenbelt, Maryland

Susan Hendrix | EurekAlert!
Further information:
http://www.nasa.gov/content/goddard/nasa-funded-foxsi-to-observe-x-rays-from-sun/#.VIYcm8ma-3s

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>