Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotubes with 2 walls have singular qualities

16.04.2015

Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes

Rice University researchers have determined that two walls are better than one when turning carbon nanotubes into materials like strong, conductive fibers or transistors.


Researchers at Rice University are working to determine the electronic properties of double-walled carbon nanotubes. In this example, the team analyzed a nanotube with two zigzag components. The individual nanotubes have band gaps and are semiconductors, but when combined, the band gaps overlap and make the double-walled a semimetal.

Credit: Illustration by Matías Soto/Rice University

Rice materials scientist Enrique Barrera and his colleagues used atomic-level models of double-walled nanotubes to see how they might be tuned for applications that require particular properties. They knew from others' work that double-walled nanotubes are stronger and stiffer than their single-walled cousins. But they found it may someday be possible to tune double-walled tubes for specific electronic properties by controlling their configuration, chiral angles and the distance between the walls.

The research reported in Nanotechnology was chosen as the journal's "publisher's pick" this month. The journal also published an interview with the study's lead author, Rice graduate student Matías Soto.

Carbon nanotubes, grown by various methods, come in two basic varieties: single-walled and multiwalled (those with two or more walls). But double-walled tubes hold a special place in the hierarchy because, the researchers wrote, they behave somewhat like single-walled tubes but are stronger and better able to survive extreme conditions.

The Rice team found there's even more to them when they started looking at how the inner and outer walls match up using tubes with zigzag chirality. Because the electrical properties of single-walled tubes depend on their chirality - the angles of their hexagonal arrangement of atoms - the researchers thought it would be interesting to learn more about those properties in double-walled tubes.

"We saw that the interwall interaction could affect the electronic properties of double-walled carbon nanotubes and decided to study this effect in a more systematic way using computational simulations," Soto said.

It turned out that both the distance between the walls -- as small as a fraction of a nanometer -- and the individual chirality of the tubes impact the double-walls' electrical properties. In addition, the researchers found the diameter of the tube -- especially the inner one, with its more pronounced curvature -- has a small but significant impact on the structure's semiconducting properties.

Breaking it down further, they determined that semiconducting nanotubes wrapped around metallic, highly conductive nanotubes could be the best candidates for tuning the band gap, the property that defines the value of a semiconductor.

"The most interesting thing we found was that when you combine a metallic with a semiconductor, the band gap depends on the distance between them," Soto said.

It's not yet possible to do so, but the ability to adjust the distance between walls may lead to nanotube transistors, he said.

Other nanotube configurations may be best for turning into macroscopic carbon nanotube conducting wires, particularly with metallic-metallic nanotubes, the researchers found.

###

Co-authors of the paper are Rice graduate students Travis Boyer and postdoctoral researchers Santoshkumar Biradar and Liehui Ge; Robert Vajtai, a senior faculty fellow at Rice; Alex Elías-Zúñiga, a professor at Tecnológico de Monterrey, Mexico; and Pulickel Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of materials science and nanoengineering and of chemistry. Barrera is a professor of materials science and nanoengineering.

Read the abstract at http://iopscience.iop.org/0957-4484/26/16/165201/article

This news release can be found online at http://news.rice.edu/2015/04/14/nanotubes-with-two-walls-have-singular-qualities-2/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related Materials:

Lab talk post about the discovery: http://nanotechweb.org/cws/article/lab/60669

Enrique Barrera: https://msne.rice.edu/Content.aspx?id=105

Rice Department of Materials Science and NanoEngineering: https://msne.rice.edu

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,888 undergraduates and 2,610 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked among some of the top schools for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance.

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://news.rice.edu 

David Ruth | EurekAlert!

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>