Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nanotubes with 2 walls have singular qualities


Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes

Rice University researchers have determined that two walls are better than one when turning carbon nanotubes into materials like strong, conductive fibers or transistors.

Researchers at Rice University are working to determine the electronic properties of double-walled carbon nanotubes. In this example, the team analyzed a nanotube with two zigzag components. The individual nanotubes have band gaps and are semiconductors, but when combined, the band gaps overlap and make the double-walled a semimetal.

Credit: Illustration by Matías Soto/Rice University

Rice materials scientist Enrique Barrera and his colleagues used atomic-level models of double-walled nanotubes to see how they might be tuned for applications that require particular properties. They knew from others' work that double-walled nanotubes are stronger and stiffer than their single-walled cousins. But they found it may someday be possible to tune double-walled tubes for specific electronic properties by controlling their configuration, chiral angles and the distance between the walls.

The research reported in Nanotechnology was chosen as the journal's "publisher's pick" this month. The journal also published an interview with the study's lead author, Rice graduate student Matías Soto.

Carbon nanotubes, grown by various methods, come in two basic varieties: single-walled and multiwalled (those with two or more walls). But double-walled tubes hold a special place in the hierarchy because, the researchers wrote, they behave somewhat like single-walled tubes but are stronger and better able to survive extreme conditions.

The Rice team found there's even more to them when they started looking at how the inner and outer walls match up using tubes with zigzag chirality. Because the electrical properties of single-walled tubes depend on their chirality - the angles of their hexagonal arrangement of atoms - the researchers thought it would be interesting to learn more about those properties in double-walled tubes.

"We saw that the interwall interaction could affect the electronic properties of double-walled carbon nanotubes and decided to study this effect in a more systematic way using computational simulations," Soto said.

It turned out that both the distance between the walls -- as small as a fraction of a nanometer -- and the individual chirality of the tubes impact the double-walls' electrical properties. In addition, the researchers found the diameter of the tube -- especially the inner one, with its more pronounced curvature -- has a small but significant impact on the structure's semiconducting properties.

Breaking it down further, they determined that semiconducting nanotubes wrapped around metallic, highly conductive nanotubes could be the best candidates for tuning the band gap, the property that defines the value of a semiconductor.

"The most interesting thing we found was that when you combine a metallic with a semiconductor, the band gap depends on the distance between them," Soto said.

It's not yet possible to do so, but the ability to adjust the distance between walls may lead to nanotube transistors, he said.

Other nanotube configurations may be best for turning into macroscopic carbon nanotube conducting wires, particularly with metallic-metallic nanotubes, the researchers found.


Co-authors of the paper are Rice graduate students Travis Boyer and postdoctoral researchers Santoshkumar Biradar and Liehui Ge; Robert Vajtai, a senior faculty fellow at Rice; Alex Elías-Zúñiga, a professor at Tecnológico de Monterrey, Mexico; and Pulickel Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of materials science and nanoengineering and of chemistry. Barrera is a professor of materials science and nanoengineering.

Read the abstract at

This news release can be found online at

Follow Rice News and Media Relations via Twitter @RiceUNews

Related Materials:

Lab talk post about the discovery:

Enrique Barrera:

Rice Department of Materials Science and NanoEngineering:

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,888 undergraduates and 2,610 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked among some of the top schools for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance.

Media Contact

David Ruth


David Ruth | EurekAlert!

More articles from Physics and Astronomy:

nachricht Physicists made crystal lattice from polaritons
20.03.2018 | ITMO University

nachricht Mars' oceans formed early, possibly aided by massive volcanic eruptions
20.03.2018 | University of California - Berkeley

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>