Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomagnets for future data storage

31.03.2017

The idea is intriguing: if only a single atom or small molecule was needed for a single unit of data (a zero or a one in the case of binary digital technology), massive volumes of data could be stored in the tiniest amount of space. This is theoretically possible, because certain atoms can be magnetised in only one of two possible directions: "spin up" or "spin down". Information could then be stored and read by the sequence of the molecules' magnetisation directions.

However, several obstacles still need to be overcome before single-molecule magnet data storage becomes a reality. Finding molecules that can store the magnetic information permanently and not just fleetingly is a challenge, and it is even more difficult to arrange these molecules on a solid surface to build data storage carriers. To address the latter problem, an international team of researchers led by chemists from ETH Zurich has now developed a new method that offers numerous advantages over other approaches.


Dysprosium atoms (green) on the surface of nanoparticles can be magnetized in only one of two possible directions: "spin up" or "spin down."

Credit: ETH Zurich / Université de Rennes

Fusing atoms to the surface

Christophe Copéret, a professor at the Laboratory of Inorganic Chemistry at ETH Zurich, and his team developed a molecule with a dysprosium atom at its centre (dysprosium is a metal belonging to the rare-earth elements). This atom is surrounded by a molecular scaffold that serves as a vehicle. The scientists also developed a method for depositing such molecules on the surface of silica nanoparticles and fusing them by annealing at 400 degrees Celsius. The molecular structure used as a vehicle disintegrates in the process, yielding nanoparticles with dysprosium atoms well-dispersed at their surface. The scientists showed that these atoms can be magnetised and maintain their magnetic information.

The magnetisation process currently only works at around minus 270 degrees Celsius (near absolute zero), and the magnetisation can be maintained for up to one and a half minute. The scientists are therefore looking for methods that will allow the magnetisation to be stabilised at higher temperatures and for longer periods of time. They are also looking for ways to fuse atoms to a flat surface instead of to nanoparticles.

Simple preparation

One of the advantages of the new method is its simplicity. "Nanoparticles bonded with dysprosium can be made in any chemical laboratory. No cleanroom and complex equipment are required," says Florian Allouche, a doctoral student in Copéret's group. In addition, the magnetisable nanoparticles can be stored at room temperature and re-utilized.

Other preparation methods include the direct deposition of individual atoms onto a surface, yet the materials obtained are only stable at very low temperatures mainly due to the agglomeration of these individual atoms. Alternatively, molecules with ideal magnetic properties can be deposited onto a surface, but this immobilization often negatively affects the structure and the magnetic properties of the final object.

###

For this research project, ETH scientists worked with colleagues from the Universities of Lyon and Rennes, Collège de France in Paris, Paul Scherrer Institute in Switzerland, and Berkeley National Laboratory in the USA.

Reference

Allouche F et al.: Magnetic Memory from Site Isolated Dy(III) on Silica Materials. ACS Central Science 2017, doi: 10.1021/acscentsci.7b00035

Media Contact

Dr. Christophe Copéret
ccoperet@inorg.chem.ethz.ch
41-446-339-394

 @ETH_en

http://www.ethz.ch/index_EN 

Dr. Christophe Copéret | EurekAlert!

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>