Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nano-watch has steady hands


Tick... tock... Very regular clocks are essential in our everyday lives. They enable us to navigate, from the marine chronometers used to determine longitude, to GPS. Stable clocks power the in-ternet, defining the speed with which information can be sent and received.

If your timepiece is very precise, it is easy to detect even small changes to its regularity. By measur-ing the motion of a physical object which is keeping time, such as the pendulum of a grandfather clock, and comparing it to an electronic reference, then we can detect disturbances, such as vibra-tions of the case.

An international team of researches from the Universities of Vienna, Duisburg-Essen and Tel Aviv use tiny silicon nano-cylinders as the ultra-stable hands of a clock. Using a laser to levitate the tiny rod, they make the nano-hands tick with pulses of polarized light.

Credit: James Millen/University of Vienna

In research published in Nature Communications, Stefan Kuhn at the University of Vienna and col-leagues have created an amazingly stable, material hand for an electronic clock, realized by the rotations of a micrometre sized silicon cylinder, which is levitated by light. The team use the clock to kick the tiny rotor with pulses of polarized light, causing it to spin one million times a second.

"It is amazing that we can take an electronic signal, and use it to perfectly drive the motion of a physi-cal object, without any loss of stability. Our clock only lost one-millionth of a second over four days", says co-author James Millen. Other such tiny mechanical devices are limited in precision through contact with their environment, but when levitated the nano-rotor remains extremely stable for very long times.

Preparing such nanomechanical devices relies on the art of making pristine silicon pillars on a chip, as done in the group of Fernando Patolsky at Tel Aviv University. The Vienna team uses a "laser hammer" to knock out individual rods and traps them in tweezers made of light.

Describing the ensuing dynamics is a theoretical challenge that has been solved by the theoretical physicists Benjamin Stickler and Klaus Hornberger at the University of Duisburg-Essen. The motion of the spinning nano-rod is chaotic, a behaviour also found in weather patterns and road traffic.

This may not sound promising for technological application, but it is possible to find islands of calm in the chaos, where the ticking of the nano-hands of the clock become ultra-stable.

The ticking of a material, rather than electronic, clock is very sensitive to its environment. This high-ly accurate, tiny hand of a watch can be used to precisely measure properties of the world on the nanoscale, for instance pressure variations over sub-millimetre distances.

The levitated cylinder could be moved through a gas flow to measure turbulence, or through a beam of atoms or light to discern its properties. It may one day even be possible to use this method to test the limits of quantum physics: "At high rotation rates, this is an environmental sensor of stunning precision. At low frequencies it can open a new range of experiments on the quantum mechanics of rotation", says Markus Arndt.


Publication in Nature Communications:

"Optically driven ultra-stable nanomechanical rotor", S. Kuhn, B. A. Stickler, A. Kosloff, F. Patolsky, K. Hornberger, M. Arndt and J. Millen, Nature Communications. DOI: 10.1038/s41467-017-01902-9.

Media Contact

James Millen, Ph.D.


James Millen, Ph.D. | EurekAlert!

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>