Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mysterious ripples found racing through planet-forming disk

08.10.2015

Astronomers using NASA's Hubble Space Telescope and the European Southern Observatory's (ESO) Very Large Telescope in Chile have discovered never-before-seen features within the dusty disk surrounding the young, nearby star AU Microscopii (AU Mic).The fast-moving, wave-like structures are unlike anything ever observed, or even predicted in a circumstellar disk, said researchers of a new analysis. This new, unexplained phenomenon may provide valuable clues about how planets form inside these star-surrounding disks.

U Mic is located 32 light-years away in the southern constellation Microscopium. It is an optimal star to observe because its circumstellar disk is tilted edge-on to our view from Earth. This allow for certain details in the disk to be better seen.


This set of images of a 40-billion-mile-diameter edge-on disk encircling the young star AU Microscopii reveals a string of mysterious wave-like features. Astronomers discovered the ripples are moving across the disk at speed of 22,000 miles per hour. The cause of the phenomenon is unknown and never-before seen in stellar gas and dust disks.

Credits: NASA, ESA, ESO, A. Boccaletti (Paris Observatory)

Astronomers have been searching AU Mic's disk for any signs of clumpy or warped features that might offer evidence for planet formation. They discovered a very unusual feature near the star by using ESO's SPHERE (Spectro-Polarimetric High-contrast Exoplanet Research) instrument, mounted on the Very Large Telescope.

"The images from SPHERE show a set of unexplained features in the disk, which have an arc-like, or wave-like structure unlike anything that has ever been observed before," said Anthony Boccaletti of the Paris Observatory, the paper's lead author.

The images reveal a train of wave-like arches, resembling ripples in water. After spotting the features in the SPHERE data the team turned to earlier Hubble images of the disk, taken in 2010 and 2011. These features were not recognized in the initial Hubble observations. But once astronomers reprocessed the Hubble images they not only identified the features but realized that they had changed over time. The researchers report that these ripples are moving -- and they are moving very fast.

"We ended up with enough information to track the movement of these strange features over a four-year period," explained team member Christian Thalmann of the Swiss Federal Institute of Technology in Zurich, Switzerland.

"By doing this, we found that the arches are racing away from the star at speeds of up to 10 kilometers per second (22,000 miles per hour)! Co-investigator Carol Grady of Eureka Scientific in Oakland, California, added, "Because nothing like this has been observed or predicted in theory we can only hypothesize when it comes to what we are seeing and how it came about."

The ripples farther away from the star seem to be moving faster than those closer to it. At least three of the features are moving so fast that they are escaping from the gravitational attraction of the star. Such high speeds rule out the possibility that these features are caused by objects, like planets, gravitationally disturbing material in the disk. The team has also ruled out a series of phenomena as explanations, including the collision of two massive and rare asteroid-like objects releasing large quantities of dust and spiral waves triggered by instabilities in the system's gravity.

"One explanation for the strange structure links them to the star's flares. AU Mic is a star with high flaring activity -- it often lets off huge and sudden bursts of energy from on or near its surface," said co-author Glenn Schneider of Steward Observatory in Phoenix, Arizona. "One of these flares could perhaps have triggered something on one of the planets -- if there are planets -- like a violent stripping of material, which could now be propagating through the disk, propelled by the flare's force."

The team plans to continue to observe the AU Mic system to try to understand what is happening. But, for now, these curious features remain an unsolved mystery.

The results will be published Oct. 8 in the British science journal Nature.

###

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C.

For illustrations and more information about AU Mic and the Hubble Space Telescope, visit: http://www.nasa.gov/hubble or http://hubblesite.org/news/2015/36

Media Contact

Ray Villard
villard@stsci.org
410-338-4514

 @NASAGoddard

http://www.nasa.gov/goddard 

Ray Villard | EurekAlert!

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>