Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mysterious radio signals from space are much better test of Einstein's General Relativity

04.01.2016

A new way to test one of the basic principles underlying Einstein's theory of General Relativity using brief blasts of rare radio signals from space called Fast Radio Bursts is ten times, to one-hundred times better than previous testing methods that used gamma-ray bursts, according to a paper just published in the journal Physical Review Letters. The paper received additional highlighting as an "Editor's Suggestion" due to "its particular importance, innovation, and broad appeal," according to the journal's editors.

The new method is considered to be a significant tribute to Einstein on the 100th anniversary of his first formulation of the Equivalence Principle, which is a key component of Einstein's theory of General Relativity. More broadly, it also is a key component of the concept that the geometry of spacetime is curved by the mass density of individual galaxies, stars, planets, and other objects.


This illustration shows how two photons, one at a high frequency (nu_h) and another at a low frequency (nu_l), travel in curved space-time from their origin in a distant Fast Radio Burst (FRB) source until reaching the Earth. A lower-limit estimate of the gravitational pull that the photons experience along their way is given by the mass in the center of the Milky Way Galaxy.

Credit: Purple Mountain Observatory, Chinese Academy of Sciences

Fast Radio Bursts are super-brief blasts of energy -- lasting just a few milliseconds. Until now, only about a dozen Fast Radio Bursts have been detected on Earth. They appear to be caused by mysterious events beyond our Milky Way Galaxy, and possibly even beyond the Local Group of galaxies that includes the Milky Way. The new technique will be important for analyzing the abundance of observations of Fast Radio Bursts that advanced radio-signal observatories, now being planned, are expected to detect.

"With abundant observational information in the future, we can gain a better understanding of the physical nature of Fast Radio Bursts," said Peter Mészáros, Holder of the Eberly Family Chair in Astronomy and Astrophysics and Professor of Physics at Penn State, the senior author of the research paper. Like all other forms of electromagnetic radiation including visible light, Fast Radio Bursts travel through space as waves of photon particles.

The number of wave crests arriving from Fast Radio Bursts per second -- their "frequency" -- is in the same range as that of radio signals. "When more-powerful detectors provide us with more observations," Mészáros said, "we also will be able to use Fast Radio Bursts as a probe of their host galaxies, of the space between galaxies, of the cosmic-web structure of the universe, and as a test of fundamental physics."

The impact of the new method using Fast Radio Bursts is expected to increase significantly as more of the bursts are observed, and if their origin can be established more firmly. "If Fast Radio Bursts are proven to originate outside the Milky Way Galaxy, and if their distances can be measured accurately, they will be a new powerful tool for testing Einstein's Equivalence Principle and for extending the tested energy range down to radio-band frequencies," Mészáros said.

Einstein's Equivalence Principle requires that any two photons of different frequencies, emitted at the same time from the same source and traveling through the same gravitational fields, should arrive at Earth at exactly the same time.

"If Einstein's Equivalence Principle is correct, any time delay that might occur between these two photons should not be due to the gravitational fields they experienced during their travels, but should be due only to other physical effects," Mészáros said. "By measuring how closely in time the two different-frequency photons arrive, we can test how closely they obey Einstein's Equivalence Principle."

More specifically, Mészáros said the test that he and his coauthors developed involves an analysis of how much space curvature the photons experienced due to massive objects along or near their path through space. He said, "Our test of Einstein's Equivalence Principle using Fast Radio Bursts consists of checking by how much does a parameter -- the gamma parameter -- differ for the two photons with different frequencies."

Mészáros said his research team's analysis of the less-than-a-dozen recently detected Fast Radio Bursts "supersedes by one to two orders of magnitude the previous best limits on the accuracy of the Einstein Equivalence Principle," which were based on gamma rays and other energies from a 1987 supernova explosion, supernova 1987A. "Our analysis using radio frequencies shows that the Einstein Equivalence Principle is obeyed to one part in a hundred million," Mészáros said. "This result is a significant tribute to Einstein's theory, on the hundredth anniversary of its first formulation."

###

In addition to Mészáros, other authors of the paper include Jun-Jie Wei, a graduate student at the Purple Mountain Observatory of the Chinese Academy of Sciences; and two scientists who received their postdoctoral training with Mészáros at Penn State and who now hold academic and research positions in China, He Gao and Xue-Feng Wu, who is the paper's corresponding author.

This research is supported, in part, by the National Basic Research Program of China (2014CB845800 and 2013CB834900); NASA, the National Aeronautics and Space Administration of the United States (NNX 13AH50G), the National Natural Science Foundation of China (11322328 and 11433009), and the Chinese Academy of Sciences (2011231 and XDB09000000).

CONTACT

Barbara Kennedy (PIO): science@psu.edu, (+1) 814-863-4682

ARCHIVE

This press release will be archived at http://science.psu.edu/news-and-events/2015-news/Keating12-2015 (likely on or after 4 January 2015)

Media Contact

Barbara K. Kennedy
science@psu.edu
814-863-4682

 @penn_state

http://live.psu.edu 

Barbara K. Kennedy | EurekAlert!

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>