Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Move over, lasers: Scientists can now create holograms from neutrons, too

21.10.2016

For the first time, a team including scientists from the National Institute of Standards and Technology (NIST) have used neutron beams to create holograms of large solid objects, revealing details about their interiors in ways that ordinary laser light-based visual holograms cannot.

Holograms--flat images that change depending on the viewer's perspective, giving the sense that they are three-dimensional objects--owe their striking capability to what's called an interference pattern. All matter, such as neutrons and photons of light, has the ability to act like rippling waves with peaks and valleys. Like a water wave hitting a gap between the two rocks, a wave can split up and then re-combine to create information-rich interference patterns (link is external).


Though they aren't holograms themselves, these animations demonstrate data that proved that neutron beams -- rather than the usual laser light -- can be used to create holograms of solid objects, in this case a tiny aluminum plate with a spiral carved into one of its faces. The first animation illustrates what happens as you slowly move back from the plate, which dominates as the bright circle in the center. Near the end, fainter circles appear at top and bottom (created by interference patterns in the neutron beams) that usefully show the outlines of the plate's spiral surface.

Credit: NIST

An optical hologram is made by shining a laser at an object. Instead of merely photographing the light reflected from the object, a hologram is formed by recording how the reflected laser light waves interfere with each other.

The resulting patterns, based on the waves' phase differences (link is external), or relative positions of their peaks and valleys, contain far more information about an object's appearance than a simple photo does, though they don't generally tell us much about its hidden interior.

... more about:
»NIST »holograms »lasers »neutrons »structures

Hidden interiors, however, are just what neutron scientists explore. Neutrons are great at penetrating metals and many other solid things, making neutron beams useful for scientists who create a new substance and want to investigate its properties. But neutrons have limitations, too. They aren't very good for creating visual images; neutron experiment data is usually expressed as graphs that would look at home in a high school algebra textbook.

And this data typically tells them about how a substance is made on average--fine if they want to know broadly about an object built from a bunch of repeating structures like a crystal (link is external), but not so good if they want to know the details about one specific bit of it.

But what if we could have the best of both worlds? The research team has found a way.

The team's previous work, performed at the NIST Center for Neutron Research (NCNR), involved passing neutrons through a cylinder of aluminum that had a tiny "spiral staircase" carved into one of its circular faces.

The cylinder's shape imparted a twist to the neutron beam, but the team also noticed that the beam's individual neutrons changed phase depending on what section of the cylinder they passed through: the thicker the section, the greater the phase shift. Eventually they realized this was essentially the information they needed to create holograms of objects' innards, and they detail their method in their new paper.

The discovery won't change anything about interstellar chess games, but it adds to the palette of techniques scientists have to explore solid materials. The team has shown that all it takes is a beam of neutrons and an interferometer--a detector that measures interference patterns--to create direct visual representations of an object and reveal details about specific points within it.

"Other techniques measure small features as well, only they are limited to measuring surface properties," said team member Michael Huber of NIST's Physical Measurement Laboratory. "This might be a more prudent technique for measuring small, 10-micron size structures and buried interfaces inside the bulk of the material."

###

The research was a multi-institutional collaboration that included scientists from NIST and the Joint Quantum Institute (link is external), a research partnership of NIST and the University of Maryland, as well as North Carolina State University and Canada's University of Waterloo.

Media Contact

Chad Boutin
boutin@nist.gov
301-975-4261

 @usnistgov

http://www.nist.gov 

Chad Boutin | EurekAlert!

Further reports about: NIST holograms lasers neutrons structures

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>