Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milestone in physics: gravitational waves detected with the laser system from LZH

12.02.2016

An international researcher team of the LIGO Scientific Collaboration (LSC), the Albert Einstein Institute (AEI) Hannover and many other institutions have proven Albert Einstein‘s theory of general relativity 100 years after its development: they succeeded in recording the merger of two black holes.

The resulting gravitational wave was measured already in September 2015; yesterday, the evaluation of the data was published in the Physical Review Letters and presented to the world press.


Installation of the LZH lasers in the LIGO cleanroom, Livingston (US).

LZH

For more than ten years, the AEI and the Laser Zentrum Hannover e.V. (LZH) have put R&D efforts into the development of laser systems for the LIGO (Laser Interferometer Gravitational Wave Observatory) gravitational wave detectors.

The lasers of the LIGO detectors were jointly manufactured and integrated into the US observatories as a ready-to-run system by the LZH, the AEI and the LZH spin-off company neoLASE. The gravitational wave detected now was recorded by the Enhance LIGO (eLIGO) model.

The Advanced LIGO (aLIGO) systems that were put into operation in the meantime have a five times higher output power compared to the previous lasers. Under these circumstances, chances to detect further gravitational waves are significantly higher.

With this high-tech measurement instrument, a reliable basis was created for future research in gravitational physics in Hannover and worldwide.

Weitere Informationen:

AEI press release: www.aei.mpg.de/gwdetection
LIGO press release: www.ligo.org/news/media-advisory.php
http://www.lzh.de/en/publications/pressreleases/2012/anotherhighpowerlaserforthe...

Dr. Nadine Tinne | Laser Zentrum Hannover e.V.

More articles from Physics and Astronomy:

nachricht Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Academy of Finland

nachricht On the shape of the 'petal' for the dissipation curve
23.04.2018 | Lobachevsky University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>