Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milestone on a nanometre level

28.06.2010
Physicists succeed in characterizing the quantum state of a complex system

Physicists from Marburg and the US have succeeded in characterizing the quantum state of a system consisting of millions of particles by bringing experimental data and theoretical predictions into agreement.

The team of researchers headed by Professors Dr. Stephan Koch und Dr. Mackillo Kira from Philipps-Universität published their results in the renowned journal “Physical Review Letters”.

Modern semiconductor devices, chemical reactions and even biological behaviour are based on nanoscale processes with one nanometre being equal to one millionth of a millimetre. Processes on this scale operate according to the intricate principles of quantum mechanics which are in general highly complex and often unintuitive. In order to design and control such nanosystems, one has to understand the entire underlying quantum mechanic state.

“This objective is currently unreachable for any system larger than a few atoms or ions for the simple reason that the direct measurement of the quantum state would immediately exhaust all resources known to mankind concerning data acquisition, storing, and processing.” explained co-author Koch.

The scientists elegantly avoided this problem by optically exciting the electrons of thin semiconductor quantum wells. Instead of probing the quantum state directly, they carried out high precision measurements to detect subtle changes in the optical quantum-well absorption. Applying cutting-edge many-body theory, they performed rigorous comparisons of the experimental data and the theoretical predictions. „Our detailed comparison between quantitative experiment and theory showed that the absorption behaviour strongly depends on the many-body configuration.” remarked Kira. Thus, it was possible to identify the quantum states of the optically active electrons with a so far unprecedented accuracy.

“This result represents a first milestone towards the characterization of nanoscale processes in semiconductors,” commented Koch, and Kira added that one of the next steps would be to try to control the quantum state of large systems. This could potentially be performed in semiconductors by a detailed control of the quantum aspects of the optical excitation. This project will again be undertaken in cooperation with experimental physicists from the National Institute of Standards and Technology and the University of Colorado in den USA (JILA/NIST).

Original publication: R. P. Smith & al: „Extraction of Many-Body Configurations from Nonlinear Absorption in Semiconductor Quantum Wells”, Physical Review Letters 104 (2010), 247401, doi: 10.1103/PhysRevLett.104.247401

Further Information:
Corresponding author: Professor Dr. Stephan Koch,
Theoretical Semiconductor Physics Group
Tel.: +49 (0) 6421 28-21336
E-Mail: stephan.w.koch@physik.uni-marburg.de

Dr. Susanne Igler | idw
Further information:
http://www.uni-marburg.de

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>