Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Milestone on a nanometre level

28.06.2010
Physicists succeed in characterizing the quantum state of a complex system

Physicists from Marburg and the US have succeeded in characterizing the quantum state of a system consisting of millions of particles by bringing experimental data and theoretical predictions into agreement.

The team of researchers headed by Professors Dr. Stephan Koch und Dr. Mackillo Kira from Philipps-Universität published their results in the renowned journal “Physical Review Letters”.

Modern semiconductor devices, chemical reactions and even biological behaviour are based on nanoscale processes with one nanometre being equal to one millionth of a millimetre. Processes on this scale operate according to the intricate principles of quantum mechanics which are in general highly complex and often unintuitive. In order to design and control such nanosystems, one has to understand the entire underlying quantum mechanic state.

“This objective is currently unreachable for any system larger than a few atoms or ions for the simple reason that the direct measurement of the quantum state would immediately exhaust all resources known to mankind concerning data acquisition, storing, and processing.” explained co-author Koch.

The scientists elegantly avoided this problem by optically exciting the electrons of thin semiconductor quantum wells. Instead of probing the quantum state directly, they carried out high precision measurements to detect subtle changes in the optical quantum-well absorption. Applying cutting-edge many-body theory, they performed rigorous comparisons of the experimental data and the theoretical predictions. „Our detailed comparison between quantitative experiment and theory showed that the absorption behaviour strongly depends on the many-body configuration.” remarked Kira. Thus, it was possible to identify the quantum states of the optically active electrons with a so far unprecedented accuracy.

“This result represents a first milestone towards the characterization of nanoscale processes in semiconductors,” commented Koch, and Kira added that one of the next steps would be to try to control the quantum state of large systems. This could potentially be performed in semiconductors by a detailed control of the quantum aspects of the optical excitation. This project will again be undertaken in cooperation with experimental physicists from the National Institute of Standards and Technology and the University of Colorado in den USA (JILA/NIST).

Original publication: R. P. Smith & al: „Extraction of Many-Body Configurations from Nonlinear Absorption in Semiconductor Quantum Wells”, Physical Review Letters 104 (2010), 247401, doi: 10.1103/PhysRevLett.104.247401

Further Information:
Corresponding author: Professor Dr. Stephan Koch,
Theoretical Semiconductor Physics Group
Tel.: +49 (0) 6421 28-21336
E-Mail: stephan.w.koch@physik.uni-marburg.de

Dr. Susanne Igler | idw
Further information:
http://www.uni-marburg.de

More articles from Physics and Astronomy:

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>