Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Midwife and signpost for photons

11.12.2017

Targeted creation and control of photons: This should succeed thanks to a new design for optical antennas developed by Würzburg scientists.

Atoms and molecules can be made to emit light particles (photons). However, without external intervention this process is inefficient and undirected.


Sketch of an optimized optical antenna: A cavity is located inside; the electrical fields during operation are coded by the colour scale. Current patterns are represented by green arrows.

Picture: Thorsten Feichtner

If it was possible to influence the process of photon creation fundamentally in terms of efficiency and emission direction, new technical possibilities would be opened up such as tiny, multifunctional light pixels that could be used to build three-dimensional displays or reliable single-photon sources for quantum computers or optical microscopes to map individual molecules.

Nanometre-sized "optical antennas" are a well-known approach. They are capable of sending photons in a specific direction with high efficiency. The idea goes back to Nobel Laureate Richard P. Feynman who envisioned nanoscale antennas during a speech at the California Institute of Technology already in 1959.

Feynman was way ahead of his time, but he triggered a rapid development in nanotechnology which enables building antenna for visible light today. The dimensions and structural details of such antennas can be controlled precisely at a size of around 250 nanometres.

The deficits of existing light antennas

The form of these optical antennas has previously been inspired by established models from radio communication and radio technology. The antennas used there are usually made of specially shaped metal wires and metal rod arrays due to the wavelengths in the centimetre range. It is in fact possible to construct antennas for light waves using metal nanorods to influence the creation and propagation of photons, but the analogy between radio waves and light waves is limited.

While macroscopic radio antennas have a high-frequency generator connected to the antenna via cable, the link at the nanometre scale of a light wave length has to be contactless. But atoms and molecules that act as photon sources do not feature connecting cables to hook them up to an optical antenna.

It is this major difference, combined with a number of other problems that are due to the high frequency of light, that has made it impossible so far to produce and subsequently control photons with optical antennas in a satisfactory manner.

Publication in the journal "Physical Review Letters"

Physicists from Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany, have now solved this problem and established a set of rules for optimized optical antennas which were published in the prestigious journal "Physical Review Letters".

The new rules could help build antennas for light so that both the photons' birth and their subsequent propagation can be controlled precisely, at least theoretically, according to Thorsten Feichtner, a researcher at JMU’s Institute of Physics in Professor Bert Hecht's team.

The principle behind the new antennas

"The idea behind this is based on the principle of similarity," the Würzburg physicist explains. "What's new in our research is that the currents of the free electrons in the antenna have to fulfil two similarity conditions at the same time. Firstly, the current pattern in the antenna must be similar to the field lines in the direct vicinity of a light-emitting atom or molecule. Secondly, the current pattern must also match the homogeneous electrical field of a plane wave as best as possible so that each photon can reach a distant receiver."

The novel antennas for light built with the help of these new rules extract far more photons from an emitter than previous antenna types derived from radio technology.

Feichtner, T., Christiansen, S., & Hecht, B. (2017). Mode Matching for Optical Antennas. Physical Review Letters, 119(21), 217401, 21 November 2017, DOI: https://doi.org/10.1103/PhysRevLett.119.217401

Contact

Thorsten Feichtner, Institute of Physics, JMU, T +49 931 31-85768, thorsten.feichtner@physik.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>