Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metal to insulator transition understood

14.09.2016

Physicists have for the first time succeeded in directly visualising on small scales how a material abruptly changes its state from conducting to insulating at low temperatures. Researchers Erik van Heumen of the University of Amsterdam and Alex McLeod from the University of California thereby provide evidence for a 60-year-old theory that explains this phenomenon and pave the way for more energy efficient technologies. The team’s experiments are described in the latest edition of Nature Physics.

Materials that conduct electricity at high temperature but are insulating at lower temperatures have been known for decades. However, until recently it was not possible to directly measure how such phase transitions proceed on small length scales. Using a new technique, Van Heumen and McLeod are now able to visualise the changes taking place in the material during such a phase transition on the nanometer scale.


Caption: Network of conducting and insulating rivers as seen in a metal-oxide in the middle of a phase transition (picture: A.S. Mueller).

In their experiments, the team observed a so-called percolation transition taking place among the electrons in the material. Above a certain critical temperature, the electrons can move relatively easily through the material enabling the flow of electrical current. When the temperature drops below a threshold temperature, small imperfections in the material trigger a kind of traffic jam for the electrons. Starting from small nanometer length scales, this traffic jam slowly grows outwards across the entire material. The previously freely moving electrons come to an abrupt halt and the material loses its conducting properties.

The material in which the team investigated the metal-to-insulator transition is the metal-oxide called vanadium-sesquioxide, V2O3, which is a more exotic relative of better known metal-oxides such as magnetite or rust. Such metal-oxides are interesting because of their exotic electrical properties, which could find use in future electronics applications.

`You could use these types of switchable materials alongside the current silicon technology used in cell phones or laptops’, says Van Heumen. ‘These materials are cheap, energy efficient and could contribute to improving sustainability.’ Van Heumen is also enthusiastic about possible applications on the interface with quantum technology.

`When used, silicon heats up and becomes disruptive to sensitive quantum technology. The abrupt metal-insulator transition that we investigated could also be forced to take place under influence of, for example, a light flash, which could find applications for better isolating the computational units of quantum computers.’

Nevertheless, more research on the phase transitions in oxides is needed before this becomes reality. Van Heumen: `The fundamental research we are currently doing to better understand the properties of these materials is similar in spirit to research on silicon forty years ago. Nowadays, silicon technology is integrated in all our electronics, so who knows what these materials will be used for twenty years from now.’

Using an ingenious method to increase the resolution of their microscope, Van Heumen and McLeod succeeded in testing a 60-year old theory that explains the switch from metal to insulator. Until recently, the wavelength of light – with a scale of several micrometers in the case of infrared light – limited the resolution of electrical conductivity measurements.

The physicists used a small needle to probe the insulating or conducting nature of the material below it with a resolution of 25 nanometers. The needle itself acts as a little antenna that sends this information back to a detector. McLeod: `Our technique allows optical imaging at unprecedented spatial resolution. With this unique method, we could directly visualise for the first time how the transition spreads through the material.’

The experiment took place at 100 degrees ℃ below freezing, not really ideal for real-world applications. However, Van Heumen believes that materials will soon be engineered to feature similar transitions at room temperature. `Making these materials is like Legos for experts. It is the focus of an intensive research effort that looks very promising.’

http://dx.doi.org/10.1038/nphys3882

For further information, please contact:

Johan Rheeder

+31 20 525 3591

J.P.S.Rheeder@uva.nl

Johan Rheeder | AlphaGalileo
Further information:
http://www.uva.nl

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>