Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring ozone from space

19.09.2016

Today is the UN’s International Day for the Preservation of the Ozone Layer – the perfect opportunity to look at how and why measurements of this molecule are taken from space.

The hole in the ozone layer over Antarctica became an international cause for concern in the latter half of the 20th Century, but as EUMETSAT’s Atmospheric Composition Product Development Team Leader Dr Christian Retscher points out, issues relating to ozone levels are complex and wide-reaching.


Measurements from GOME-2, together with information from model runs, provide a forecast for 2 September of the total column amount of ozone over the South Pole. Compared to other regions on Earth, meteorological conditions there favour faster ozone depletion at this time of year and this is clear from the blue and dark blue coloured areas, which are considered low levels of ozone.


GOME-2 measures the total column amount of ozone through both the stratosphere and troposphere as it orbits the Earth, as shown in this image comprising a composite of measurements taken over one day. The blank area over the South Pole illustrates that lack of sunlight affects GOME-2’s ability to take measurements there at this time of year and why various other sources of data were needed to create the first image above. This image uses a different colour scale to indicate ozone thickness but the blue and dark blue areas again show thinner levels.

What is ozone?

Ozone is a molecule consisting of three oxygen atoms and occurs naturally in the atmosphere. However, close to the surface of the Earth, it is considered a pollutant.

The ozone layer in the stratosphere, with a bulk concentration at 15-30km above the surface of the Earth, is crucial for protecting humans and other species from the harmful effects of ultraviolet radiation from the sun, Christian said.

The ozone layer in the stratosphere absorbs UV radiation. While UV radiation is essential for life on Earth, it is also linked to skin cancer and damage to plant life. That is why the thinning of the ozone layer (often referred to as the ozone hole), causes concern.

But measurements of ozone in the troposphere (the lowest level of the Earth’s atmosphere, extending up to between 7km above sea level at polar regions and 20km over the tropics) are also needed because this molecule, which can be a by-product of industrial production, is harmful to breathe and damaging to plants.

About 90 per cent of ozone is in the stratosphere and 10 per cent in the troposphere, Christian said.

Measuring and monitoring ozone

EUMETSAT’s Metop-A (launched in 2006) and Metop-B (2012) satellites, flying in a sun-synchronised polar orbit approximately 817km above the Earth’s surface, carry an instrument called GOME-2 (Global Ozone Monitoring Experiment), which is dedicated to measuring ozone in the atmosphere.

“GOME-2 maps ozone from above,” Christian explains. “It takes total column (through the stratosphere and troposphere) ozone measurements.

“What is important about GOME-2 is that this is an instrument of an operational satellite mission, in other words, we are flying the same sensor more than once. This provides long time series of measurements, contributes to a better understanding of ozone production and destruction processes and also allows trend analysis.

“The primary goal is to measure how the ozone layer is changing in general, not only the so-called ozone hole over Antarctica. There, meteorological conditions favour the accelerated depletion of stratospheric ozone, but ozone is thinning over the Arctic as well.

“When we look at how the ozone is behaving over the long term, what we hope to see is that stratospheric ozone is recovering somewhat.

“Specifically, measurements from the last couple of years hint at a slight recovery of the stratospheric ozone layer over the South Pole.”

Ozone in the troposphere

“When we look at ozone with instruments like GOME-2, we see the whole column, but we want to separate between the troposphere and stratosphere,” Christian added.

“While ozone measurements in the stratosphere are more related to climate aspects, thus long-term effects, ozone in the troposphere has different implications for human health.

“When we are measuring ozone in the troposphere, short term trends or diurnal variations of ozone concentrations are much more relevant. We are interested in improvements over short time ranges like hours or days and much finer geographical scales, for example, cities.

“When inhaled, ozone is harmful to the respiratory system, so what is interesting is the understanding of changes of ozone levels on, for example, a daily basis. How much ozone is there and what is the threat level - is it safe for you to be outside or not? Novel instruments, for example, Sentinel-4, will support this kind of research since ozone profile data will be available on an hourly basis.”

Instruments measuring ozone

The GOME-2 instruments are dedicated to monitoring ozone but are not the only satellite-borne instruments taking ozone measurements.

Metop satellites also carry the Infrared Atmospheric Sounding Interferometer (IASI) instruments, which measure ozone as well.

Other relevant European ozone-monitoring instruments were GOME on ERS-2 , or SCIAMACHY, MIPAS and GOMOS, which were flown on ESA’s Envisat satellite. Very important contributions to ozone research are based on the more than 30 years time series of data from satellites flown by, for example, NASA and NOAA, with the successful series of TOMS , SBUV , POAM , and SAGE instruments or the later OMI or the OMPS sensors.

Planning is well in hand to continue monitoring ozone into the future.

Metop-A is approaching the end of its lifetime in space but Metop-C, also with a GOME-2 instrument, is expected to be launched in 2018, so the all-important long time series of measurements will be maintained.

Under the EU’s flagship Copernicus programme for monitoring the environment from space, EUMETSAT’s Meteosat Third Generation (MTG) geostationary meteorological satellites, and the EPS-Second Generation satellites will carry the Copernicus Sentinel-4 and -5 instruments respectively. Prior to these, ESA will launch the Sentinel-5 Precursor mission. All of these Sentinels have capacity to monitor ozone. In addition, there will be other European sensors in space supporting the monitoring of ozone, although not their primary mission objective, for example, IASI-NG (IASI- Next Generation) on EPS-SG and the IRS (Infrared Sounder) on MTG-S.

EUMETSAT will launch its EPS-SG satellites in the 2022-2042 timeframe, while the first in the series of MTG-S (sounding) platforms is expected to be launched in 2022 as well.

About today

In 1994, the United Nationals General Assembly declared 16 September the International Day for Preservation of the Ozone Layer to commemorate the day in 1987 when the Montreal Protocol was signed. This protocol phased-out the use of substances which deplete the ozone layer. (Resolution 49/114).

Note: acronyms used in the "Instruments measuring ozone section" are spelt out below.

·         SCIAMACHY - Scanning Imaging Absorption Spectrometer for Atmospheric Chartography

·         MIPAS - Michelson Interferometer for Passive Atmospheric Sounding

·         GOMOS- Global Ozone Monitoring by Occultation of Stars

·         TOMS – Total Ozone Mapping Spectrometer

·         SBUV – Solar Backscatter Ultraviolet Instrument

·         POAM – Polar Ozone and Aerosol Measurement

·         SAGE – Stratospheric Aerosol and Gas Experiment

·         OMI – Ozone Monitoring Instrument

·         OMPS – Ozone Mapping Profiler Suite

http://www.eumetsat.int/website/home/News/DAT_3203686.html?lang=EN&pState=1

Neil Fletcher | AlphaGalileo

More articles from Physics and Astronomy:

nachricht Scientific achievements during the operation of Lomonosov satellite
18.12.2017 | Lomonosov Moscow State University

nachricht Quantum memory with record-breaking capacity based on laser-cooled atoms
18.12.2017 | Faculty of Physics University of Warsaw

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>