Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maybe it wasn't the Higgs particle after all

10.11.2014

Last year CERN announced the finding of a new elementary particle, the Higgs particle. But maybe it wasn't the Higgs particle, maybe it just looks like it. And maybe it is not alone.

Many calculations indicate that the particle discovered last year in the CERN particle accelerator was indeed the famous Higgs particle. Physicists agree that the CERN experiments did find a new particle that had never been seen before, but according to an international research team, there is no conclusive evidence that the particle was indeed the Higgs particle.

The research team has scrutinized the existing scientific data from CERN about the newfound particle and published their analysis in the journal Physical Review D. A member of this team is Mads Toudal Frandsen, associate professor at the Center for Cosmology and Particle Physics Phenomenology, Department of Physics, Chemistry and Pharmacy at the University of Southern Denmark.

"The CERN data is generally taken as evidence that the particle is the Higgs particle. It is true that the Higgs particle can explain the data but there can be other explanations, we would also get this data from other particles", Mads Toudal Frandsen explains.

The researchers' analysis does not debunk the possibility that CERN has discovered the Higgs particle. That is still possible - but it is equally possible that it is a different kind of particle.

"The current data is not precise enough to determine exactly what the particle is. It could be a number of other known particles", says Mads Toudal Frandsen.

What was it then?

But if it wasn’t the Higgs particle, that was found in CERN's particle accelerator, then what was it?

"We believe that it may be a so-called techni-higgs particle. This particle is in some ways similar to the Higgs particle - hence half of the name”, says Mads Toudal Frandsen.

Although the techni-higgs particle and Higgs particle can easily be confused in experiments, they are two very different particles belonging to two very different theories of how the universe was created.

The Higgs particle is the missing piece in the theory called the Standard Model. This theory describes three of the four forces of nature. But it does not explain what dark matter is - the substance that makes up most of the universe. A techni-higgs particle, if it exists, is a completely different thing:

"A techni-higgs particle is not an elementary particle. Instead, it consists of so-called techni-quarks, which we believe are elementary. Techni-quarks may bind together in various ways to form for instance techni-higgs particles, while other combinations may form dark matter. We therefore expect to find several different particles at the LHC, all built by techni-quarks”, says Mads Toudal Frandsen.

New force needed for new particles

If techni-quarks exist, there must be a force to bind them together so that they can form particles. None of the four known forces of nature (gravity, the electromagnetic force, the weak nuclear force and the strong nuclear force) are any good at binding techni-quarks together. There must therefore be a yet undiscovered force of nature. This force is called the the technicolor force.

What was found last year in CERN's accelerator could thus be either the Higgs particle of the Standard Model or a light techni-higgs particle, composed of two techni-quarks.

Mads Toudal Frandsen believes that more data from CERN will probably be able to determine if it was a Higgs or a techni-higgs particle. If CERN gets an even more powerful accelerator, it will in principle be able to observe techni-quarks directly.

The rest of the team behind the scientific paper is: Alexander Belyaev and Matthew S. Brown from the University of Southampton, UK and Roshan Foadi from the University of Helsinki, Finland.

Ref: Technicolor Higgs boson in the light of LHC data. Phys. Rev. D 90, 035012th Alexander Belyaev, Matthew S. Brown, Roshan Foadi, and Mads T. Frandsen.


About elementary particles
An elementary particle is a particle that cannot be divided into smaller components. For a long time it was believed that atoms were elementary, but in the early 1900s, it became clear that atoms consist of protons and electrons, and later also of neutrons. In the mid-1900s, it became further clear that protons and neutrons are composed of quarks, held together by the strong nuclear force. Since then, more have been added. Elementary particles are today divided into two categories: building blocks of matter (fermions) and carriers of force (bosons).


Also read
Physicists suggest new way to detect dark matter
Universe stability and its mathematical underpinning
Now it is more likely than ever: There must be particles out there smaller than Higgs particle

Contact Mads Toudal Frandsen, associate professor. Tel: +45 6550 4521. Email: frandsen@cp3.dias.sdu.dk

Birgitte Svennevig | EurekAlert!
Further information:
http://sdu.dk/en/Om_SDU/Fakulteterne/Naturvidenskab/Nyheder/2014_10_29_technihiggs

Further reports about: CERN Higgs particle LHC clear dark dark matter determine neutrons particles physics protons

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>