Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mathematical model aids simulations of early universe

06.01.2010
Scientists have made many discoveries about the origins of our 13 billion-year-old universe. But many scientific mysteries remain. What exactly happened during the Big Bang, when rapidly evolving physical processes set the stage for gases to form stars, planets and galaxies? Now astrophysicists using supercomputers to simulate the Big Bang have a new mathematical tool to unravel those mysteries, says Daniel R. Reynolds, assistant professor of mathematics at SMU.

Reynolds collaborated with astrophysicists at the University of California at San Diego as part of a National Science Foundation project to simulate cosmic reionization, the time from 380,000 years to 400 million years after the universe was born.

Together the scientists built a computer model of events during the "Dark Ages" when the first stars emitted radiation that altered the surrounding matter, enabling light to pass through. The team tested its model on two of the largest existing NSF supercomputers, "Ranger" at the University of Texas at Austin and "Kraken" at the University of Tennessee.

The new mathematical model tightly couples a myriad of physical processes present during cosmic reionization, such as gas motion, radiation transport, chemical kinetics and gravitational acceleration due to star clustering and dark matter dynamics, Reynolds says.

The key characteristic of the model that differentiates it from competing work is that the researchers focused on enforcing a very tight coupling in the model between the different physical processes.

"By forcing the computational methods to tightly bind these processes together, our new model allows us to generate simulations that are highly accurate, numerically stable and computationally scalable to the largest supercomputers available," Reynolds says.

They presented their research at a Texas Cosmology Network Meeting at UT in late October. Reynolds' mathematical research also was published as "Self-Consistent Solution of Cosmological Radiation-Hydrodynamics and Chemical Ionization" in the October issue of the "Journal of Computational Physics."

Simulation models typically consist of a complex bundle of mathematical equations representing physical processes. The equations are integrated to reflect interaction of the physical processes. Only supercomputers can simultaneously solve the equations. Scientific intuition and creativity come into play by developing the base model with equations with the best parameters, Reynolds says. Variables can be altered to describe different scenarios that might have occurred. The objective is to develop a simulation model with results that most closely resemble telescope observations and that predict a universe that looks like what we have. If that happens, scientists have discovered the set of physical processes that existed at the birth of the universe as it was evolving from one instant to the next.

Physical processes include the heating of various gases, gravity, the conservation of mass, the conservation of momentum, the conservation of energy, expansion of the universe, the transport of radiation, and the chemical ionization of different species such as Hydrogen and Helium, the primary elements present at the beginning of the universe. An additional equation running in the background describes and models the dynamics of dark matter — the majority of the matter in the universe — which gives rise to gravity and is attributed with helping the universe form stars, planets and galaxies.

"Supercomputers are so big, they hold so much data, you can build models that work with many processes at one time," Reynolds says. "A lot of these processes behave nonlinearly. When they are put together, they inhibit each other, feed off each other, so you end up with many different processes when they are put together."

A direct consequence of the tight coupling that the researchers enforce in their model is that the resulting system of equations is much more complex than those that must be solved by other models, Reynolds says.

"This paper describes both how we form the coupled model, as well as the mathematical methods that enable us to solve the systems of equations that result. These include methods that accurately track the different time scales of each process, which often occur at rates that vary by orders of magnitude," he says. "However, perhaps the most important contribution of this paper is our description of how we pose the complex interaction of different models as a nonlinear problem with potentially billions of equations and unknowns, and solve that problem using new algorithms designed for next-generation supercomputers. We conclude by demonstrating that the new model lives up to the ideal, providing an approach that allows high accuracy, stability and scalability on a suite of difficult test problems."

Only recently have mathematics algorithms been invented to solve basic problems — like diffusion of heat — using resources as large as those available on modern supercomputers, Reynolds says. There have been simple analytical solutions to many problems from mathematical physics for hundreds of years. However, those analytical solutions only work when scientists simplify the problem in some way or another. For example, he says, they may approximate the shape of a planet as a sphere, instead of an ellipsoid, or may assume that ocean water is incompressible, which only works for very shallow water, or assume the Earth is homogeneous, instead of formed using widely differing layers of rock.

"Scientists have been able to approximate a great many physical processes in such idealized situations. But the true frontier nowadays is to let go of these simplifying approximations and treat the problems as they really are, by modeling all of the geometric structure and the in-homogeneity," Reynolds says. "To do that, you need to solve harder equations with lots of data, which is ideally suited to using supercomputers. The numerical methods that can allow us to use larger and larger computers have only just come out. The problems are getting more challenging and harder to solve, but the numerical methods are reaching greater capability, so you can really start moving them forward. These new computers make everything a new frontier."

Besides Reynolds, other researchers were John C. Hayes, Lawrence Livermore National Laboratory, Livermore, Calif.; Pascal Paschos, Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla, Calif.; and Michael L. Norman, Center for Astrophysics and Space Sciences, and physics department, the University of California at San Diego, La Jolla. — Margaret Allen

Kim Cobb | EurekAlert!
Further information:
http://www.smu.edu

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Efficient time synchronization of sensor networks by means of time series analysis

24.01.2017 | Information Technology

Immune Defense Without Collateral Damage

24.01.2017 | Life Sciences

Open, flexible assembly platform for optical systems

24.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>