Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mass Map Shines Light on Dark Matter

16.07.2015

Dark matter may find it tougher to hide in our universe.

An international team of researchers has developed a new map of the distribution of dark matter in the universe using data from the Dark Energy Survey (DES).


Image courtesy Vinu Vikraman / Argonne National Laboratory

By cross-correlating a galaxy distribution map and a mass map derived from weak gravitational lensing, a team of researchers that included Argonne National Laboratory’s Vinu Vikraman showed how the galaxy distribution traces that of the dark matter.

The DES, underway at the Blanco telescope in Chile, is a cosmological galaxy survey that will map approximately an eighth of the visible sky. The primary aim of the DES is to better characterize dark energy – the source of the observed accelerated expansion of the universe.

But one of the ways of doing this is through studying the distribution and evolution of another scientific mystery: dark matter. Scientists estimate that ordinary atomic matter makes up only one-fifth of the total mass in the universe. The remaining mass is dark – “dark” because it does not absorb or emit light.

Scientists need a precise measurement of all the matter in the universe and where it is located to perform cosmological experiments accurately, said Vinu Vikraman, a postdoctoral researcher at the U.S. Department of Energy’s Argonne National Laboratory and co-author of the study.

“We don’t know what dark matter really is or how to directly locate it in the universe,” Vikraman said. “This map will act as a valuable tool for cosmology to answer some of these questions, including those related to dark energy.”

To indirectly detect dark matter, the scientists constructed a “mass map” using weak gravitational lensing shear measurements made by the DES. Gravitational lensing refers to the bending of light by the mass surrounding galaxies. This bending creates a distortion, or shear, of the galaxy’s shape, which scientists can then measure to determine the density and matter distribution of the lens.

The researchers then compared the mass map with a new optical galaxy distribution map, also made from DES data. The information allowed the scientists to look for patterns in the distribution of galaxies and dark matter.

“It also allows us to check our work,” Vikraman said, “since the distribution of galaxies is expected to trace the distribution of dark matter.”

The relationship between the galaxy distribution and the mass map is close to that predicted by theoretical models based on cosmological simulations that include an accelerated expansion of the universe.

DES data are projected to cover more than 36 times the area of this initial map. Scientists are hopeful that this set of data will lead to new clues about the nature of dark energy.

The research appears in two papers, Vikram et al., “Wide-Field Lensing Mass Maps from the DES Science Verification Data: Methodology and Detailed Analysis,” in Physical Review D (in press) and Chang et al., “Wide-Field Lensing Mass Maps from DES Science Verification Data,” published June 24 in Physical Review Letters. The U.S. Department of Energy’s Office of Science, the National Science Foundation and the collaborating institutions in the DES funded the study.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov/.

By Sarah Schlieder

Contact Information
Louise Lerner
Argonne National Laboratory
media@anl.gov
Phone: 630-252-5526

Louise Lerner | newswise
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>