Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mass Map Shines Light on Dark Matter

16.07.2015

Dark matter may find it tougher to hide in our universe.

An international team of researchers has developed a new map of the distribution of dark matter in the universe using data from the Dark Energy Survey (DES).


Image courtesy Vinu Vikraman / Argonne National Laboratory

By cross-correlating a galaxy distribution map and a mass map derived from weak gravitational lensing, a team of researchers that included Argonne National Laboratory’s Vinu Vikraman showed how the galaxy distribution traces that of the dark matter.

The DES, underway at the Blanco telescope in Chile, is a cosmological galaxy survey that will map approximately an eighth of the visible sky. The primary aim of the DES is to better characterize dark energy – the source of the observed accelerated expansion of the universe.

But one of the ways of doing this is through studying the distribution and evolution of another scientific mystery: dark matter. Scientists estimate that ordinary atomic matter makes up only one-fifth of the total mass in the universe. The remaining mass is dark – “dark” because it does not absorb or emit light.

Scientists need a precise measurement of all the matter in the universe and where it is located to perform cosmological experiments accurately, said Vinu Vikraman, a postdoctoral researcher at the U.S. Department of Energy’s Argonne National Laboratory and co-author of the study.

“We don’t know what dark matter really is or how to directly locate it in the universe,” Vikraman said. “This map will act as a valuable tool for cosmology to answer some of these questions, including those related to dark energy.”

To indirectly detect dark matter, the scientists constructed a “mass map” using weak gravitational lensing shear measurements made by the DES. Gravitational lensing refers to the bending of light by the mass surrounding galaxies. This bending creates a distortion, or shear, of the galaxy’s shape, which scientists can then measure to determine the density and matter distribution of the lens.

The researchers then compared the mass map with a new optical galaxy distribution map, also made from DES data. The information allowed the scientists to look for patterns in the distribution of galaxies and dark matter.

“It also allows us to check our work,” Vikraman said, “since the distribution of galaxies is expected to trace the distribution of dark matter.”

The relationship between the galaxy distribution and the mass map is close to that predicted by theoretical models based on cosmological simulations that include an accelerated expansion of the universe.

DES data are projected to cover more than 36 times the area of this initial map. Scientists are hopeful that this set of data will lead to new clues about the nature of dark energy.

The research appears in two papers, Vikram et al., “Wide-Field Lensing Mass Maps from the DES Science Verification Data: Methodology and Detailed Analysis,” in Physical Review D (in press) and Chang et al., “Wide-Field Lensing Mass Maps from DES Science Verification Data,” published June 24 in Physical Review Letters. The U.S. Department of Energy’s Office of Science, the National Science Foundation and the collaborating institutions in the DES funded the study.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov/.

By Sarah Schlieder

Contact Information
Louise Lerner
Argonne National Laboratory
media@anl.gov
Phone: 630-252-5526

Louise Lerner | newswise
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>