Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Map of Mysterious Molecules In Our Galaxy Sheds New Light on Century-Old Puzzle

13.01.2015

By analyzing the light of hundreds of thousands of celestial objects, Johns Hopkins astronomers from the Sloan Digital Sky Survey (SDSS) have created a unique map of enigmatic molecules in our galaxy that are responsible for puzzling features in the light from stars.

The map, which can be viewed at http://is.gd/dibmap , was unveiled Jan. 8 at the 225th meeting of the American Astronomical Society in Seattle.


T.W. Lan, G. Zasowski, B. Ménard, SDSS and 2MASS/UMass/IPAC-Caltech/NASA/NSF

Map of diffuse interstellar bands in the Milky Way.

“Seeing where these mysterious molecules are located is fascinating,” said Brice Ménard, a professor in the Department of Physics and Astronomy at The Johns Hopkins University.

Gail Zasowski, another Johns Hopkins astronomer who played a key role in the project, added, “This new map required analyzing huge amounts of data and using the power of statistical analyses.”

These puzzling features in the light from stars, which astronomers call “Diffuse Interstellar Bands” (DIBs), have been a mystery ever since they were discovered by astronomer Mary Lea Heger of Lick Observatory in 1922. While analyzing the light from stars, she found unexpected lines that were created by something existing in the interstellar space between the stars and the Earth.

Further research showed that these mysterious lines were due to a variety of molecules. But exactly which of many thousands of possible molecules are responsible for these features has remained a mystery for almost a century.

This new map, based on SDSS data that reveals the location of these enigmatic molecules, was compiled from two parallel studies.

Zasowski, a postdoctoral fellow, led one team that focused on the densest parts of our galaxy, using infrared observations that can cut through the dust clouds and reach previously obscured stars. Johns Hopkins graduate student Ting-Wen Lan led the other study, which used visible light to detect the mysterious molecules located above the plane of the galaxy, where their signatures are very weak and harder to measure.

“We do not have a full map yet, but we can already see a lot of interesting patterns,” said Ménard, who worked on both teams.

Lan's team analyzed the light from more than half a million stars, galaxies, and quasars to detect the molecules’ features in the regions well above and beyond the Milky Way’s disk. In addition, the team was able to see the types of environments in which these molecules are more likely to be found. Some molecules like dense regions of gas and dust, and others prefer the lonelier spots far away from stars.

“These results will guide researchers toward the best observations and laboratory experiments to pin down the properties and nature of these enigmatic molecules,” Lan said.

To look toward the galactic plane, hidden behind thick clouds of cosmic dust, Zasowski's team used data from the SDSS's APOGEE survey. APOGEE observations, which make use of infrared light, can easily see through interstellar dust and measure the properties of stars all over the galaxy.

The team members detected some of the mysterious features in front of about 60,000 stars in a wide range of environments and were even able to measure the motion of these molecules. “For the first time, we can see how these mysterious molecules are moving around the galaxy,” Zasowski said. “This is extremely useful and brings in new connections between these molecules and the dynamics of the Milky Way.”

All the recent findings concerning these mysterious features paint a picture of tough little molecules that can exist in a variety of environments, all over the galaxy.

“Almost a hundred years after their discovery, the exact nature of these molecules still remains a mystery, but we are getting one step closer to understanding what they are made of,” Ménard said. “The era of Big Data in astronomy allows us to look at the universe in new ways. There is so much to explore with these large datasets. This is just the beginning.”

The researchers used data from the Sloan Digital Sky Survey. The work was supported by National Science Foundation Grant AST-1109665 and NSF postdoctoral fellowship AST-1203017.

Photos of the researchers available; contact Phil Sneiderman.

Contact Information
Media contact: Phil Sneiderman
Office: 443-997-9907; Cell: 410-299-7462
prs@jhu.edu / On Twitter: @filroy

Phil Sneiderman | newswise
Further information:
http://www.jhu.edu

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>