Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Map of Mysterious Molecules In Our Galaxy Sheds New Light on Century-Old Puzzle

13.01.2015

By analyzing the light of hundreds of thousands of celestial objects, Johns Hopkins astronomers from the Sloan Digital Sky Survey (SDSS) have created a unique map of enigmatic molecules in our galaxy that are responsible for puzzling features in the light from stars.

The map, which can be viewed at http://is.gd/dibmap , was unveiled Jan. 8 at the 225th meeting of the American Astronomical Society in Seattle.


T.W. Lan, G. Zasowski, B. Ménard, SDSS and 2MASS/UMass/IPAC-Caltech/NASA/NSF

Map of diffuse interstellar bands in the Milky Way.

“Seeing where these mysterious molecules are located is fascinating,” said Brice Ménard, a professor in the Department of Physics and Astronomy at The Johns Hopkins University.

Gail Zasowski, another Johns Hopkins astronomer who played a key role in the project, added, “This new map required analyzing huge amounts of data and using the power of statistical analyses.”

These puzzling features in the light from stars, which astronomers call “Diffuse Interstellar Bands” (DIBs), have been a mystery ever since they were discovered by astronomer Mary Lea Heger of Lick Observatory in 1922. While analyzing the light from stars, she found unexpected lines that were created by something existing in the interstellar space between the stars and the Earth.

Further research showed that these mysterious lines were due to a variety of molecules. But exactly which of many thousands of possible molecules are responsible for these features has remained a mystery for almost a century.

This new map, based on SDSS data that reveals the location of these enigmatic molecules, was compiled from two parallel studies.

Zasowski, a postdoctoral fellow, led one team that focused on the densest parts of our galaxy, using infrared observations that can cut through the dust clouds and reach previously obscured stars. Johns Hopkins graduate student Ting-Wen Lan led the other study, which used visible light to detect the mysterious molecules located above the plane of the galaxy, where their signatures are very weak and harder to measure.

“We do not have a full map yet, but we can already see a lot of interesting patterns,” said Ménard, who worked on both teams.

Lan's team analyzed the light from more than half a million stars, galaxies, and quasars to detect the molecules’ features in the regions well above and beyond the Milky Way’s disk. In addition, the team was able to see the types of environments in which these molecules are more likely to be found. Some molecules like dense regions of gas and dust, and others prefer the lonelier spots far away from stars.

“These results will guide researchers toward the best observations and laboratory experiments to pin down the properties and nature of these enigmatic molecules,” Lan said.

To look toward the galactic plane, hidden behind thick clouds of cosmic dust, Zasowski's team used data from the SDSS's APOGEE survey. APOGEE observations, which make use of infrared light, can easily see through interstellar dust and measure the properties of stars all over the galaxy.

The team members detected some of the mysterious features in front of about 60,000 stars in a wide range of environments and were even able to measure the motion of these molecules. “For the first time, we can see how these mysterious molecules are moving around the galaxy,” Zasowski said. “This is extremely useful and brings in new connections between these molecules and the dynamics of the Milky Way.”

All the recent findings concerning these mysterious features paint a picture of tough little molecules that can exist in a variety of environments, all over the galaxy.

“Almost a hundred years after their discovery, the exact nature of these molecules still remains a mystery, but we are getting one step closer to understanding what they are made of,” Ménard said. “The era of Big Data in astronomy allows us to look at the universe in new ways. There is so much to explore with these large datasets. This is just the beginning.”

The researchers used data from the Sloan Digital Sky Survey. The work was supported by National Science Foundation Grant AST-1109665 and NSF postdoctoral fellowship AST-1203017.

Photos of the researchers available; contact Phil Sneiderman.

Contact Information
Media contact: Phil Sneiderman
Office: 443-997-9907; Cell: 410-299-7462
prs@jhu.edu / On Twitter: @filroy

Phil Sneiderman | newswise
Further information:
http://www.jhu.edu

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>