Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz physicists provide important component for the Large Hadron Collider at CERN

05.06.2015

Super-fast circuit board to be used for the identification of important particle collisions comes from Mainz

After a two-year operational pause and two months after its restart in April 2015, the Large Hadron Collider (LHC) at the CERN research center is now again recording data at energies as high as never before.


Work on the dipole magnets of the Large Hadron Collider (LHC) during the operational downtime

photo/©: CERN

These high-energy collisions at the world’s largest and most powerful particle accelerator are the beginning of a new era of particle physics and scientists hope that they will provide new insights into the structure of matter and possibly even a fundamental revision of the concepts of physics.

Some 50 researchers from Mainz University will be actively participating in the research at the LHC in the coming years. For the restart, they have contributed an important component.

Following its first startup at the end of 2009, the LHC subsequently gave proof of its enormous performance capabilities, culminating in the discovery of the Higgs boson in the summer of 2012. Two opposing particle beams are accelerated to nearly the speed of light and are then allowed to collide in the 27-kilometer-long tunnel of the accelerator ring, the result of which is the creation of new particles.

After two years of maintenance work, the LHC was cooled down to its operating temperature of minus 271 degrees Celsius earlier this year. Since April 2015, proton beams are circling again to collide at an energy of 13 tera-electron volts (TeV), whereas only 8 TeV was previously achieved.

Because of this increase in collision energy, the scientists expect to generate Higgs bosons more frequently than before. This could open a window to so-called New Physics, which extends beyond the well-known Standard Model. The greater the number of generated Higgs bosons, the more accurately they can be measured and compared with the theoretical expectations.

"It would be even more interesting and important if we observe completely new particles, for example, candidates for dark matter," said Professor Volker Büscher of the Institute of Physics at Mainz University. "We have very high expectations for this increase in energy because it will allow us to hunt for much heavier particles."

Thanks to technical modifications, the LHC is now able to transport more protons than before and it will produce more particle encounters at a rate of about one billion collisions per second. The experiments will generate huge amounts of data to be evaluated. Sophisticated triggers are used to capture only the really important events.

For the ATLAS experiment, the working group from Mainz has developed a new circuit board that automatically decides whether the system, rather like a camera, should record the image of a collision. "The topological trigger developed in Mainz is one of the main components that will ensure even better filtering in the future," explained Adam Kaluza, who is directly involved in this work as a doctoral candidate. The super-fast circuit board looks at 40 million events per second and decides in real time whether each individual event should be stored or not – an enormous technical challenge.

"We are now entering an exciting time that could lead us into completely unknown territory," added Büscher, referring to the new run of the LHC, which will continue until at least 2018. Mainz-based physicists are well placed with regard to the restart thanks to the Cluster of Excellence "Precision Physics, Fundamental Interactions and Structure of Matter" (PRISMA), which provides an excellent framework for taking a leading role in the new research work.

Images:
http://www.uni-mainz.de/bilder_presse/08_physik_etap_lhc_kollisionen_00.jpg
Physicists working in the ATLAS experiment control room. The message on LHC's Page 1 information panel showing that the machine is preparing for stable beams can be seen in the background.
photo/©: Pierre Descombe, CERN 2015

http://www.uni-mainz.de/bilder_presse/08_physik_etap_lhc_neustart_01.jpg
Work on the dipole magnets of the Large Hadron Collider (LHC) during the operational downtime
photo/©: CERN

http://www.uni-mainz.de/bilder_presse/08_physik_etap_lhc_neustart_02.jpg
A member of the ETAP working group at JGU, Christian Kahra, carrying out test measurements with the new circuit board for the ATLAS trigger.
photo/©: ETAP

http://www.uni-mainz.de/bilder_presse/08_physik_etap_lhc_neustart_03.jpg
The module developed in Mainz filters 40 million collision events per second and automatically decides which particle encounters are recorded and which are not.
photo: ETAP

Further information:
Professor Dr. Volker Büscher
Experimental Particle and Astroparticle Physics (ETAP)
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-20399
fax +49 6131 39-25169
e-mail: buescher@uni-mainz.de
http://www.etap.physik.uni-mainz.de/index_ENG.php

Weitere Informationen:

http://www.cern.ch/ ;
http://home.web.cern.ch/topics/large-hadron-collider ;
http://www.atlas.ch/ ;
http://www.fsp101-atlas.de/

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>