Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz physicists provide important component for the Large Hadron Collider at CERN

05.06.2015

Super-fast circuit board to be used for the identification of important particle collisions comes from Mainz

After a two-year operational pause and two months after its restart in April 2015, the Large Hadron Collider (LHC) at the CERN research center is now again recording data at energies as high as never before.


Work on the dipole magnets of the Large Hadron Collider (LHC) during the operational downtime

photo/©: CERN

These high-energy collisions at the world’s largest and most powerful particle accelerator are the beginning of a new era of particle physics and scientists hope that they will provide new insights into the structure of matter and possibly even a fundamental revision of the concepts of physics.

Some 50 researchers from Mainz University will be actively participating in the research at the LHC in the coming years. For the restart, they have contributed an important component.

Following its first startup at the end of 2009, the LHC subsequently gave proof of its enormous performance capabilities, culminating in the discovery of the Higgs boson in the summer of 2012. Two opposing particle beams are accelerated to nearly the speed of light and are then allowed to collide in the 27-kilometer-long tunnel of the accelerator ring, the result of which is the creation of new particles.

After two years of maintenance work, the LHC was cooled down to its operating temperature of minus 271 degrees Celsius earlier this year. Since April 2015, proton beams are circling again to collide at an energy of 13 tera-electron volts (TeV), whereas only 8 TeV was previously achieved.

Because of this increase in collision energy, the scientists expect to generate Higgs bosons more frequently than before. This could open a window to so-called New Physics, which extends beyond the well-known Standard Model. The greater the number of generated Higgs bosons, the more accurately they can be measured and compared with the theoretical expectations.

"It would be even more interesting and important if we observe completely new particles, for example, candidates for dark matter," said Professor Volker Büscher of the Institute of Physics at Mainz University. "We have very high expectations for this increase in energy because it will allow us to hunt for much heavier particles."

Thanks to technical modifications, the LHC is now able to transport more protons than before and it will produce more particle encounters at a rate of about one billion collisions per second. The experiments will generate huge amounts of data to be evaluated. Sophisticated triggers are used to capture only the really important events.

For the ATLAS experiment, the working group from Mainz has developed a new circuit board that automatically decides whether the system, rather like a camera, should record the image of a collision. "The topological trigger developed in Mainz is one of the main components that will ensure even better filtering in the future," explained Adam Kaluza, who is directly involved in this work as a doctoral candidate. The super-fast circuit board looks at 40 million events per second and decides in real time whether each individual event should be stored or not – an enormous technical challenge.

"We are now entering an exciting time that could lead us into completely unknown territory," added Büscher, referring to the new run of the LHC, which will continue until at least 2018. Mainz-based physicists are well placed with regard to the restart thanks to the Cluster of Excellence "Precision Physics, Fundamental Interactions and Structure of Matter" (PRISMA), which provides an excellent framework for taking a leading role in the new research work.

Images:
http://www.uni-mainz.de/bilder_presse/08_physik_etap_lhc_kollisionen_00.jpg
Physicists working in the ATLAS experiment control room. The message on LHC's Page 1 information panel showing that the machine is preparing for stable beams can be seen in the background.
photo/©: Pierre Descombe, CERN 2015

http://www.uni-mainz.de/bilder_presse/08_physik_etap_lhc_neustart_01.jpg
Work on the dipole magnets of the Large Hadron Collider (LHC) during the operational downtime
photo/©: CERN

http://www.uni-mainz.de/bilder_presse/08_physik_etap_lhc_neustart_02.jpg
A member of the ETAP working group at JGU, Christian Kahra, carrying out test measurements with the new circuit board for the ATLAS trigger.
photo/©: ETAP

http://www.uni-mainz.de/bilder_presse/08_physik_etap_lhc_neustart_03.jpg
The module developed in Mainz filters 40 million collision events per second and automatically decides which particle encounters are recorded and which are not.
photo: ETAP

Further information:
Professor Dr. Volker Büscher
Experimental Particle and Astroparticle Physics (ETAP)
Institute of Physics
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-20399
fax +49 6131 39-25169
e-mail: buescher@uni-mainz.de
http://www.etap.physik.uni-mainz.de/index_ENG.php

Weitere Informationen:

http://www.cern.ch/ ;
http://home.web.cern.ch/topics/large-hadron-collider ;
http://www.atlas.ch/ ;
http://www.fsp101-atlas.de/

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>