Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz-based physicists find missing link between glass formation and crystallization

01.07.2016

Densified regions with drastically reduced internal motion either act as crystal precursors or cluster and frustrate all further dynamics

Glasses are neither fluids nor crystals. They are amorphous solids and one of the big puzzles in condensed matter physics. For decades, the question of how glass forms has been a matter of controversy. Is it because some regions freeze their thermal motion? Or is it because there are particles or clusters which do not fit to form a crystal?


Solidification under sedimentation: The dynamic map illustrates the speed of the particles in the model system. Regions with low speeds are marked in red and orange while those with higher speeds are blue. Red dots show where a solid has already formed. Similar, maps were also taken during glass formation, but due to the overall homogeneity of the process look somewhat more boring.

ill./©: KOMET336, Institute of Physics, JGU

At least for the model system of hard spheres, researchers at Johannes Gutenberg University Mainz (JGU) in Germany have now taken a major leap in reconciling these two opposing views. Using a clever combination of light scattering and microscopy, they were able to demonstrate that within a melt of hard spheres small compacted regions form comprising a few hundred spheres.

These so-called precursors are the starting point for both crystallization at moderate undercooling and glass formation at large undercooling. The researchers observed that the motility of particles within these precursors was extremely limited and decreased further with undercooling, while their number rapidly increased. With only few precursors present, crystallization may still start at the surface. However, the more of these precursors are present, the more of their surface they block.

Moreover, with the precursor number still increasing in time, the system soon gets jammed and all further dynamics cease. This means that from a certain point in undercooling and time onwards, crystal formation is no longer possible. The results of this research work performed in the JGU Graduate School of Excellence “Materials Science in Mainz” (MAINZ) have recently been published in the journal Nature Physics as an advanced online publication.

Glass and crystal are two different structures but either of these can form from a melt. In the case of glass, the atoms retain their disorganized state, similar to that seen in liquids, while in crystals they assume a very regular lattice structure. It is the solidification process that determines which type of structure will be formed. The physics experiments carried out at Mainz University did not focus on the fabrication of a particular glass, such as for use in safety windows or fiber optics for communication purposes. They were rather aimed at an advanced understanding of the glass formation process in general, which is a traditional research topic in the JGU Condensed Matter Physics group.

The researchers were looking at the formation of amorphous solids in general, and they used an experimental model system for hard spheres. Here the undercooling is not realized by decreasing the temperature, but by increasing the concentration of polymer spheres. Crystals form when more than 50 percent of the volume is taken by the hard spheres in the suspension, while glasses form at more than 60 percent. Such systems of micro-sized polymer spheres in a solvent have been subject to intense research over the last decades, because they closely mimic the behavior of ideal hard spheres which are well studied by theory and computer simulation.

It has been known since the 1990s that hard-sphere melts contain both regions of differing density and order as well as regions that vary in terms of the motility of the atoms, i.e., regions of structural and dynamic inhomogeneity. Since then, the role played by these two factors during the process of solidification has been the subject of intense debate by theoretical physicists. "What we have now ascertained is that these regions are in fact identical, thus laying the controversy to rest," said Professor Thomas Palberg of the Institute of Physics at Mainz University, explaining the results of his research.

Mapping motility within hard-sphere suspensions

In order to understand the processes taking place, Sebastian Golde, a member of the MAINZ Graduate School of Excellence and Palberg's research team, investigated hard-sphere model systems in an optical experiment. "We were able to show that the regions with more densely packed spheres and a little more order coincide with those areas where the hard spheres clearly move more slowly," stated Golde. This means that the long-standing enigma concerning the two different regions of inhomogeneity has been resolved.

The method used is a combination of static and dynamic light scattering. “We analyze how much light of a laser beam directed at the sample is scattered in a given direction. This tells us the sample structure. But we also analyze how it flickers after scattering. This tells us how fast the particles move,” said Golde, who himself built his instrument designed by Dr. Hans Joachim Schöpe, who recently moved to the University of Tübingen. Moreover, utilizing a clever imaging system, Golde was able to obtain so-called dynamic maps with unprecedented resolution somewhat smaller than the precursors.

Like an image produced by a camera, the result is a kind of photo that captures the activity of the dynamics within the various regions. Thus, the researchers observed that as time proceeded, ever more small dense areas with slow-moving spheres were generated. Their formation speed decides whether there is enough time left for the formation of crystals before jamming occurrs. Since the precursor formation speed is related to the hard-sphere concentration, one finds crystallization at low concentrations of hard spheres. On the other hand, at higher concentrations these compacted regions become quickly arrested and the system solidifies into a glass.

"In other words, glass results when so many crystallization precursors are formed that they in effect arrest each other," clarified Palberg. "For us, this means that an unexpected and fascinating link has been found between the two solidification scenarios. Arguably, this was one of the most important missing pieces of the puzzle.” The findings are believed to be very general, but the investigation should clearly be extended also to other model systems to further support the view of coinciding structural and dynamical inhomogeneities being responsible for glass formation.

Publication:
Sebastian Golde, Thomas Palberg, and Hans Joachim Schöpe
Correlation between dynamical and structural heterogeneities in colloidal hard-sphere suspensions
Nature Physics, Advanced Online Publication, 28 March 2016
DOI: 10.1038/NPHYS3709
http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3709.html


Further information:
Professor Dr. Thomas Palberg
Condensed Matter Physics
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23638
fax: +49 6131-39-23807
e-mail: palberg@uni-mainz.de
http://kolloid.physik.uni-mainz.de/people01.php

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>