Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnets, all the way down!

14.06.2017

Researchers design a hierarchic magnet structure from nanoparticles to study symmetry and shape effects over multiple space scales.

In many ways, magnets are still mysterious. They get their (often powerful) effects from the microscopic interactions of individual electrons, and from the interplay between their collective behavior at different scales. But if you can't move these electrons around to study how factors like symmetry impact the larger-scale magnetic effects, what can you do instead?


This is a schematic image of the three levels and their characteristic properties of a hierarchical structure of magnetic nanoparticles.

Credit: Fabian, Elm, Hofmann, Klar/AIP Publishing

It turns out that assemblies of metallic nanoparticles, which can be carefully arranged at multiple length scales, behave like bulk magnets and display intriguing, shape-dependent behavior. The effects, reported this week in the Journal of Applied Physics, from AIP Publishing, could help improve high-density information storage and spintronics technologies.

"The work was inspired by the question [of] how the magnetic interaction between nanoparticles influences the magnetic behavior of the system as a whole, since such array structures are used, for example, in high density storage media," said Alexander Fabian, lead author of the study from Justus-Liebig University Giessen in Germany. "To study the influence of [the] shape of the nanoparticle assemblies, as well as the distance between them, we came up with the idea of a hierarchical design of the samples where the corresponding parameters can be varied systematically."

The round, metallic Fe304 nanocomponents Fabian and his colleagues used in their study were arranged to form differing shapes at three different length scales. Using electron beam lithography, a modernized lithography method that uses electrons to write the desired structure, they configured the nanoparticles into closely-packed shapes, such as triangles, with one side measuring about 10 particles in length. A shaped grid of the smaller-scale configurations, spaced approximately one micron apart, comprised the third hierarchy of the length scales.

"For the preparation of the samples we used lithographic methods, which allow the precise control of the distance and the shape of the nanoparticle assemblies," Fabian said. "For each of the three hierarchical levels, there are two contributions, namely the lattice-like part and the shape-like part. The high number of possibilities in sample design makes this a challenging aspect to find systems with the most promising physical properties."

The shapes configured at each (sub-)scale were chosen based on their relative symmetries, so as to isolate the effects measured to their causal dimensional scale.

"The symmetries of the lattice and the shapes were here chosen to not interfere with each other. For example, the circular shaped assemblies were combined with different types of lattices," Fabian said. "Assemblies of different shapes, such as triangles, squares or circles, exhibit an angle-dependence of the magnetic anisotropy (direction dependence) corresponding to the shape of the assembly."

With these clever designs, the group was able to demonstrate a large-scale magnet, built from the nanoparticle up. Although their structures acted like bulk ferromagnets, the precise measurements surprised them.

"Our results show that on the chosen length scales, only the shape of the assemblies influences the magnetic behavior, revealing that the assemblies of nanoparticles behave like a single bulk ferromagnet." Fabian said. "Most surprisingly was that the particles seem to behave like a bulk ferromagnet, but with a different magnetization value than that for bulk material, which is an interesting point for future investigations."

Experiments like these can offer valuable, fundamental insight to the latest magnetics-dependent technologies, which make up much of the electronics market. But more fundamentally, these nanoscopically bottom-up approaches are demonstrating controllable means of probing the fundamental fibers comprising bulk and collective electromagnetic properties.

"From a fundamental point of view, it is very interesting to investigate nano systems like nanoparticles. Since they can be fabricated in a very controlled manner, they can also be studied in a systematic approach. Properties of the nanoparticles different from the bulk, or even new properties like superparamagnetism, in nanoparticles make them also interesting for fundamental research."

###

The article, "Hierarchical structures of magnetic nanoparticles for controlling magnetic interactions on three different length scales," is authored by Alexander Fabian, Matthias T. Elm, Detlev M. Hofmann and Peter J. Klar. The article appeared in the Journal of Applied Physics June 13, 2017 (DOI: 10.1063/1.4984201) and can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4983849.

ABOUT THE JOURNAL

Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results of applied physics research. See http://jap.aip.org.

Media Contact

Julia Majors
media@aip.org
301-209-3090

 @AIPPhysicsNews

http://www.aip.org 

Julia Majors | EurekAlert!

Further reports about: Applied Physics Electrons Magnets Nanoparticles nanoparticle

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>